Advanced SearchSearch Tips
Preparation and Characterization of Electrospun TiO2-Activated Carbon Complex Fiber as Photocatalyst
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 11, Issue 1,  2010, pp.28-33
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2010.11.1.028
 Title & Authors
Preparation and Characterization of Electrospun TiO2-Activated Carbon Complex Fiber as Photocatalyst
Jung, Min-Jung; Jeong, Eui-Gyung; Jang, Jeen-Seok; Lee, Young-Seak;
  PDF(new window)
In this study, -Activated carbon (AC) complex fibers were prepared by electrospinning for the synergetic effect of adsorption and degradation of organic pollutant. The average diameter of these fibers increased with increasing the amount of AC added, except for 1AC-TOF (AC =1/40 mass ratio). After calcinations at , long as-spun fibers were broken and their average diameter was slightly decreased. The resultant fibers after calcination had rough surface and sphere shapes like a peanut. From XRD results, it was confirmed that as-spun fibers were changed to anatase fiber after calcinations at . The prepared -AC complex fibers could remove procian blue dyes by solar light irradiation with high removal property of 94~99%. The PB dye was rapidly removed by adsorption during the initial 5 minutes. But after 5 minutes, dye removal was occurred by photodegradation. In this study, the most efficient AC/ ratio of -AC complex fibers was 5/40, showing the synergetic effect of adsorption and photodegradation. It is expected that the -AC complex fibers can be used to remove of organic pollutants in water system.
-Activated carbon complex fiber;Electrospinning;Photocatalyst;Organic pollutant removal;
 Cited by
A review of elemental mercury removal processing,Bae, Kyong-Min;Kim, Byung-Joo;Park, Soo-Jin;

Carbon letters, 2011. vol.12. 3, pp.121-130 crossref(new window)
Dendrimer–titania nanocomposite: synthesis and dye-removal capacity, Research on Chemical Intermediates, 2015, 41, 6, 3743  crossref(new windwow)
A review of elemental mercury removal processing, Carbon letters, 2011, 12, 3, 121  crossref(new windwow)
Prediction and characterization of drug release in a multi-drug release system, Journal of Industrial and Engineering Chemistry, 2012, 18, 1, 325  crossref(new windwow)
Titanium dioxide-modified activated carbon for advanced drinking water treatment, Process Safety and Environmental Protection, 2016  crossref(new windwow)
Separation of biomass using carbon molecular sieves treated with hydrogen peroxide, Journal of Industrial and Engineering Chemistry, 2015, 21, 278  crossref(new windwow)
High-sensitivity gas sensor using electrically conductive and porosity-developed carbon nanofiber, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 384, 1-3, 297  crossref(new windwow)
Preparation and characterization of nickel-coated carbon nanofibers produced from the electropsinning of polyamideimide precursor, Macromolecular Research, 2012, 20, 5, 503  crossref(new windwow)
Electrochemical properties of polyaniline composite electrodes prepared by in-situ polymerization in titanium dioxide dispersed aqueous solution, Synthetic Metals, 2012, 162, 7-8, 695  crossref(new windwow)
Tryba, B.; Morawski, A. W.; Inagaki, M. Appl. Catal. B Environ. 2003, 41, 427. crossref(new window)

Mrowetz, M.; Pirola C.; Selli E. Ultrason. Sonochem. 2003, 10, 247. crossref(new window)

Chatterjee, D.; Dasgupta, Shimanti. J. Photochem. Photobiol. C Photochem. Rev. 2005, 6, 186. crossref(new window)

Palanivelu, K.; Im, J. S.; Lee, Y. S. Carbon Lett. 2007, 8, 214. crossref(new window)

Rizzo, L.; Koch, J.; Belgiorno, V.; Anderson, M. A. Desalination 2007, 211,1. crossref(new window)

Yang, J.; Zhang, J.; Zhu, L.; Chen, S.; Zhang, Y.; Tang, Y.; Zhu, Y.; Li, Y. J. Hazard. Mater. B 2006, 137, 952. crossref(new window)

Kedem, S.; Schmidt, J.; Paz, Y.; Cohen, Y. Langmuir 2005, 21, 5600.

Reneker, D. H.; Yarin, A. L.; Fong, H.; Koombhongse, S. J. Appl. Phys. 2000, 87, 4531. crossref(new window)

Ali, R.; Bakar, W. A.; Teck, L .K. Modern Applied Science 2010, 4, 59.

Sakka, S. "Handbook of sol-gel science and technology, vol III: processing characterization and applications", Kluwer Academic Press, Boston, 2004, 369.

Matos, J.; Laine, J.; Herrman, J. M. Appl. Catal. B: Environ. 1998, 18, 281. crossref(new window)

Herrman, J. M.; Matos, J.; Disdier, J.; Guillard, C.; Laine, J.; Malato, S.; Blanco, J. Catal. Tod. 1999, 54, 255. crossref(new window)

Kim, S. J.; Yun, S. M.; Kim, H.; Kim, J. G.; Lee, Y. S. Carbon Lett. 2009, 10, 123. crossref(new window)

Jung, M. J.; Im, J. S.; Palanivelu, K.; Kim, T.; Lee, Y. S. J. Nanosci. Nanotechnol. 2010, 10, 297. crossref(new window)

Yoshida, A.; Nonaka,S.; Aoki, I.; Nishino A. J. Power Sources 1996, 60, 213. crossref(new window)

Grahn, J. V.; Linder, M.; Fredriksson, E. J. Vac. Sci. Technol. A 1998, 16, 2495. crossref(new window)

Han, W. Q.; Zettl, A. Nano Lett. 2003, 3, 5681.

Kim, C.; Yang, K. S. Carbon Lett. 2002, 3, 210.

Im, J. S.; Kim, M. I.; Lee, Y. S. Mater. Lett. 2008, 62/21-22, 3652.

Grahn, J. V.; Linder, M.; Fredriksson, E. J. Vac. Sci. Technol. A 1998, 16, 2495. crossref(new window)

Yun, S. M.; Palanivelu, K.; Kim, Y. H.; Kang, P. H.; Lee, Y. S. J. Ind. Eng. Chem. 2008, 14, 667. crossref(new window)

Lin, L.; Zhou, Y.; Zhu, Y.; Xie, Y. Front. Chem. China 2007, 2, 64. crossref(new window)