JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Influence of Surface Treatment of Multi-walled Carbon Nanotubes on Interfacial Interaction of Nanocomposites
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 11, Issue 2,  2010, pp.102-106
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2010.11.2.102
 Title & Authors
Influence of Surface Treatment of Multi-walled Carbon Nanotubes on Interfacial Interaction of Nanocomposites
Kim, Ki-Seok; Park, Soo-Jin;
  PDF(new window)
 Abstract
In this work, the effect of aminized multi-walled carbon nanotubes (NH-MWNTs) on the mechanical interfacial properties of epoxy nanocomposites was investigated by means of fracture toughness, critical stress intensity factor (), and impact strength testing, and their morphology was examined by scanning electron microscope (SEM). It was found that the incorporation of amine groups onto MWNTs was confirmed by the FT-IR and Raman spectra. The mechanical interfacial properties of the epoxy nanocomposites were remarkably improved with increasing the NH-MWNT content. It was probably attributed to the strong physical interaction between amine groups of NH-MWNTs and epoxide groups of epoxy resins. The SEM micrographs showed that NH-MWNTs were uniformly embed and bonded with epoxy resins, resulted in the prevention of the deformation and crack propagation in the NH-MWNTs/epoxy nanocomposites.
 Keywords
Carbon nanotube;Epoxy;Chemical treatment;Physical properties;
 Language
English
 Cited by
1.
알킬화가 다중벽탄소나노튜브로 강인화된 에폭시수지의 계면 및 열전도도에 미치는 영향,허건영;이경엽;박수진;

폴리머, 2011. vol.35. 6, pp.548-552
2.
Chemical Vapour Sensing Behaviors of Multi-Walled Carbon Nanotube Adsorbed Electrospun Nylon 6,6 Nanofibers,;;;

Macromolecular research, 2011. vol.19. 9, pp.980-983 crossref(new window)
3.
A review of the preparation and properties of carbon nanotubes-reinforced polymer compositess,;;

Carbon letters, 2011. vol.12. 2, pp.57-69 crossref(new window)
4.
Synthesis of ditrimethylolpropane acrylate with low functionality for UV-curable coatings,;;;

Journal of Industrial and Engineering Chemistry, 2012. vol.18. 5, pp.1577-1581 crossref(new window)
5.
Electrical, Thermal, and Rheological Properties of Carbon Black and Carbon Nanotube Dual Filler-Incorporated Poly(dimethylsiloxane) Nanocomposites,;;;

Macromolecular research, 2012. vol.20. 5, pp.465-472 crossref(new window)
6.
Recent Advances in Carbon-Nanotube-Based Epoxy Composites,;;

Carbon letters, 2013. vol.14. 1, pp.1-13 crossref(new window)
1.
Synthesis of ditrimethylolpropane acrylate with low functionality for UV-curable coatings, Journal of Industrial and Engineering Chemistry, 2012, 18, 5, 1577  crossref(new windwow)
2.
Chemical vapour sensing behaviors of multi-walled carbon nanotube adsorbed electrospun nylon 6,6 nanofibers, Macromolecular Research, 2011, 19, 9, 980  crossref(new windwow)
3.
A review of the preparation and properties of carbon nanotubes-reinforced polymer compositess, Carbon letters, 2011, 12, 2, 57  crossref(new windwow)
4.
Functionalization of multi-walled carbon nanotubes by epoxide ring-opening polymerization, Journal of Solid State Chemistry, 2011, 184, 12, 3253  crossref(new windwow)
5.
Recent Advances in Carbon-Nanotube-Based Epoxy Composites, Carbon letters, 2013, 14, 1, 1  crossref(new windwow)
6.
Electrical, thermal, and rheological properties of carbon black and carbon nanotube dual filler-incorporated poly(dimethylsiloxane) nanocomposites, Macromolecular Research, 2012, 20, 5, 465  crossref(new windwow)
7.
Thermal and mechanical interfacial properties of epoxy composites based on functionalized carbon nanotubes, Materials Science and Engineering: A, 2011, 528, 29-30, 8517  crossref(new windwow)
 References
1.
Iijima, S. Nature 1991, 56, 354.

2.
Bikiaris, D.; Vassiliou, A.; Chrissafis, K.; Paraskevopoulos, K. M.; Jannakoudakis, A.; Docoslis, A. Polym. Degrad. Stab. 2008, 93, 952. crossref(new window)

3.
Lee, Y. S.; Im, J. S.; Yun, S. M.; Nho, Y. C., Kang, P. H.; Jin, H. Carbon Lett. 2009, 10, 314. crossref(new window)

4.
Farzi, G.; Akbar, S.; Beyou, E.; Cassagnau, P.; Melis, F. Polymer 2009, 50, 5901. crossref(new window)

5.
Tang W.; Santare, M. H.; Advani, S. G. Carbon 2003, 41, 2779. crossref(new window)

6.
Kim, K. S.; Park, S. J. Synthetic Metals 2010, 160, 123. crossref(new window)

7.
Zhu, B. K.; Xie, S. H.; Xu, Z. K.; Xu, Y. Y. Compos. Sci. Technol. 2006, 66, 548. crossref(new window)

8.
Yuan, J.; Liew, K. M. Carbon 2009, 47, 713. crossref(new window)

9.
Manchado, M. A. L.; Valentini, L.; Biagiotti, J.; Kenny, J. M. Carbon 2005, 43, 1499. crossref(new window)

10.
Basiuk, E. V.; Gromovoy, T. Y.; Datsyuk, A.; Palyanytsya, B. B.; Pokrovskiy, V. A.; Basiuk, V. A. J. Nanosci. Nanotechnol. 2005, 5, 984. crossref(new window)

11.
Star, A.; Liu, Y.; Grant, K.; Ridvan, L.; Stoddart, J. F.; Steuerman, D. W., Diehl, M. R.; Boukai, A.; Heath, J. R. Macromolecules 2003, 36, 553. crossref(new window)

12.
Park, S .J.; Cho, M. S.; Lim, S. T.; Choi, H. J.; Jhon, M. S. Macromol. Rapid. Commum. 2003, 24, 1070. crossref(new window)

13.
Sobkowicz, M. J.; Dorgan, J. R.; Gneshin, K. W. Herring, A. M.; McKinnon, J. T. Carbon 2009, 47, 622. crossref(new window)

14.
Ramanathan, T.; Liu, H.; Brinson, L. C. J. Polym. Sci. B:Polym. Phys. 2005, 43, 2269. crossref(new window)

15.
Steven, J. L.; Huang, A. Y.; Peng, H. Q.; Chang, I. W.; Khabashesku, V. N.; Margrave, J. L. Nano Lett. 2003, 3, 331. crossref(new window)

16.
Shen, J.; Huang, W.; Wu, L.; Hu, Y.; Ye, M. Compos. Sci. Technol. 2007, 67, 3041. crossref(new window)

17.
Velasco-Santos, C.; Martinez-Hernandez, A. L.; Lozada- Cassou, M.; Alvarez-Castillo, A.; Castano, V. M. Nanotechnology 2002, 13, 495. crossref(new window)

18.
Jin, F.L.; Park, S. J. J. Polym. Sci. Part B: Polym. Phys. 2006, 44, 3348. crossref(new window)

19.
Park, S. J.; Kim, H. C. J. Polym. Sci.: Part B: Polym. Phys. 2001, 139, 121.

20.
Thongruang, W.; Spontak,R. J.; Balik,C. M. Polymer, 2002, 43, 2279. crossref(new window)

21.
Park, S. J.; Jin, F. L.; Lee, C.; Mater. Sci. Eng. A 2004, 402, 335.