JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Electrical Conductivity of Chemically Reduced Graphene Powders under Compression
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 11, Issue 2,  2010, pp.90-95
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2010.11.2.090
 Title & Authors
Electrical Conductivity of Chemically Reduced Graphene Powders under Compression
Rani, Adila; Nam, Seung-Woong; Oh, Kyoung-Ah; Park, Min;
  PDF(new window)
 Abstract
Carbon materials such as graphite and graphene exhibit high electrical conductivity. We examined the electrical conductivity of synthetic and natural graphene powders after the chemical reduction of synthetic and natural graphite oxide from synthetic and natural graphite. The trend of electrical conductivity of both graphene (synthetic and natural) was compared with different graphite materials (synthetic, natural, and expanded) and carbon nanotubes (CNTs) under compression from 0.3 to 60 MPa. We found that synthetic graphene showed a marked increment in electrical conductivity compared to natural graphene. Interestingly, the total increment in electrical conductivity was greater for denser graphite; however, an opposite behavior was observed in nanocarbon materials such as graphene and CNTs, probably due to the differing layer arrangement of nanocarbon materials.
 Keywords
Synthetic and natural graphite;Graphene;Carbon nanotubes;Electrical conductivity under compression;
 Language
English
 Cited by
1.
Preparation and Characterization of Reduced Graphene Nanosheets via Pre-exfoliation of Graphite Flakes,;;

Bulletin of the Korean Chemical Society, 2012. vol.33. 1, pp.209-214 crossref(new window)
1.
Dielectric Characteristics and Microwave Absorption of Graphene Composite Materials, Materials, 2016, 9, 10, 825  crossref(new windwow)
2.
Synthesis of carbon-coated graphene electrodes and their electrochemical performance, Electrochimica Acta, 2011, 56, 18, 6547  crossref(new windwow)
3.
Photo-Response of Functionalized Self-Assembled Graphene Oxide on Zinc Oxide Heterostructure to UV Illumination, Nanoscale Research Letters, 2016, 11, 1  crossref(new windwow)
4.
DNA Origami Nanopatterning on Chemically Modified Graphene, Angewandte Chemie International Edition, 2012, 51, 4, 912  crossref(new windwow)
5.
Preparation and Characterization of Reduced Graphene Nanosheets via Pre-exfoliation of Graphite Flakes, Bulletin of the Korean Chemical Society, 2012, 33, 1, 209  crossref(new windwow)
6.
Rate-capability response of graphite anode materials in advanced energy storage systems: a structural comparison, Carbon letters, 2016, 17, 1, 39  crossref(new windwow)
7.
Electrochemical performance of graphene/carbon electrode contained well-balanced micro- and mesopores by activation-free method, Electrochimica Acta, 2012, 65, 50  crossref(new windwow)
8.
Influence of pH condition on colloidal suspension of exfoliated graphene oxide by electrostatic repulsion, Journal of Solid State Chemistry, 2012, 186, 99  crossref(new windwow)
9.
DNA Origami Nanopatterning on Chemically Modified Graphene, Angewandte Chemie, 2012, 124, 4, 936  crossref(new windwow)
10.
Effect of exfoliation temperature on carbon dioxide capture of graphene nanoplates, Journal of Colloid and Interface Science, 2012, 386, 1, 285  crossref(new windwow)
11.
Influence of multi-walled carbon nanotubes on electrochemical performance of transparent graphene electrodes, Materials Research Bulletin, 2011, 46, 8, 1301  crossref(new windwow)
12.
Interfacial polarization of disseminated conductive minerals in absence of redox-active species — Part 2: Effective electrical conductivity and dielectric permittivity, GEOPHYSICS, 2016, 81, 2, E159  crossref(new windwow)
13.
Enhanced Capacitance of Thermally Reduced Hexagonal Graphene Oxide for High Performance Supercapacitor, Fullerenes, Nanotubes and Carbon Nanostructures, 2015, 23, 7, 618  crossref(new windwow)
14.
Self-assembled graphene oxide on a photo-catalytic active transparent conducting oxide, Materials & Design, 2016, 90, 284  crossref(new windwow)
15.
Workfunction-Tunable, N-Doped Reduced Graphene Transparent Electrodes for High-Performance Polymer Light-Emitting Diodes, ACS Nano, 2012, 6, 1, 159  crossref(new windwow)
 References
1.
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666. crossref(new window)

2.
Avouris, P.; Chen, Z.; Perebeinos, V. Nature Nanotech. 2007, 2, 605. crossref(new window)

3.
Gilje, S.; Han, S.; Wang, M.; Wang, K. L.; Kaner, R. B. Nano Letters. 2007, 7, 3394. crossref(new window)

4.
Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Nature 2006, 442, 282. crossref(new window)

5.
Liang, X.; Fu, Z.; Chou, S. Y. Nano Letters. 2007, 7, 3840. crossref(new window)

6.
Wang, X.; Zhi, L. J.; Tsao, N.; Tomovic, Z.; Li, J. L.; Mullen, K. Angew. Chem. Int. Ed. 2008, 47, 2990. crossref(new window)

7.
Geim, A. K.; Novoselov, K. S. Nature Mater. 2007, 6, 183. crossref(new window)

8.
Pantea, D.; Darmstadt, H.; Kaliaguine, S.; Summchen, L.; Roy, C. Carbon 2001, 39, 1147. crossref(new window)

9.
Probst, N.; Grivei, E. Carbon 2002, 40, 201. crossref(new window)

10.
Celzard, A.; Mareche, J. F.; Payot, F.; Furdin, G. Carbon 2002, 40, 2801. crossref(new window)

11.
Sanchez-Gonzalez, J.; Macias-Garcia, A.; Alexandre- Franco, M. F.; Gomez-Serrano, V. Carbon 2005, 43, 741. crossref(new window)

12.
Deprez, N.; McLachlan, D. S. J. Phys. D: Appl. Phys. 1988, 21, 101. crossref(new window)

13.
William, S. H.; Richard, E. O. J. Am. Chem. Soc. 1958, 80, 1339. crossref(new window)

14.
Kovtyukhova, N. I.; Ollivier, P. J.; Martin, B. R.; Mallouk, T. E.; Chizhik, S. A.; Buzaneva, E. V.; Gorchinskiy, A. D. Chem. Mater. 1999, 11, 771. crossref(new window)

15.
Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Carbon 2007, 45, 1558. crossref(new window)

16.
Mathur, R. B.; Dhakate, S. R.; Gupta, D. K.; Dhami, T. L.; Aggarwal, R. K. J. Mater. Process. Technol. 2008, 203, 184. crossref(new window)