Advanced SearchSearch Tips
Electrical Conductivity of Chemically Reduced Graphene Powders under Compression
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 11, Issue 2,  2010, pp.90-95
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2010.11.2.090
 Title & Authors
Electrical Conductivity of Chemically Reduced Graphene Powders under Compression
Rani, Adila; Nam, Seung-Woong; Oh, Kyoung-Ah; Park, Min;
  PDF(new window)
Carbon materials such as graphite and graphene exhibit high electrical conductivity. We examined the electrical conductivity of synthetic and natural graphene powders after the chemical reduction of synthetic and natural graphite oxide from synthetic and natural graphite. The trend of electrical conductivity of both graphene (synthetic and natural) was compared with different graphite materials (synthetic, natural, and expanded) and carbon nanotubes (CNTs) under compression from 0.3 to 60 MPa. We found that synthetic graphene showed a marked increment in electrical conductivity compared to natural graphene. Interestingly, the total increment in electrical conductivity was greater for denser graphite; however, an opposite behavior was observed in nanocarbon materials such as graphene and CNTs, probably due to the differing layer arrangement of nanocarbon materials.
Synthetic and natural graphite;Graphene;Carbon nanotubes;Electrical conductivity under compression;
 Cited by
Preparation and Characterization of Reduced Graphene Nanosheets via Pre-exfoliation of Graphite Flakes,;;

Bulletin of the Korean Chemical Society, 2012. vol.33. 1, pp.209-214 crossref(new window)
Preparation and Characterization of Reduced Graphene Nanosheets via Pre-exfoliation of Graphite Flakes, Bulletin of the Korean Chemical Society, 2012, 33, 1, 209  crossref(new windwow)
Workfunction-Tunable, N-Doped Reduced Graphene Transparent Electrodes for High-Performance Polymer Light-Emitting Diodes, ACS Nano, 2012, 6, 1, 159  crossref(new windwow)
Enhanced Capacitance of Thermally Reduced Hexagonal Graphene Oxide for High Performance Supercapacitor, Fullerenes, Nanotubes and Carbon Nanostructures, 2015, 23, 7, 618  crossref(new windwow)
Photo-Response of Functionalized Self-Assembled Graphene Oxide on Zinc Oxide Heterostructure to UV Illumination, Nanoscale Research Letters, 2016, 11, 1  crossref(new windwow)
Rate-capability response of graphite anode materials in advanced energy storage systems: a structural comparison, Carbon letters, 2016, 17, 1, 39  crossref(new windwow)
Laser-Plasma Driven Synthesis of Carbon-Based Nanomaterials, Scientific Reports, 2017, 7, 1  crossref(new windwow)
Development of Transparent Electrodes Using Graphene Nano-Ink and Post-Consumer PET Bottles for Electrochromic Application, Key Engineering Materials, 2017, 744, 1662-9795, 463  crossref(new windwow)
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666. crossref(new window)

Avouris, P.; Chen, Z.; Perebeinos, V. Nature Nanotech. 2007, 2, 605. crossref(new window)

Gilje, S.; Han, S.; Wang, M.; Wang, K. L.; Kaner, R. B. Nano Letters. 2007, 7, 3394. crossref(new window)

Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Nature 2006, 442, 282. crossref(new window)

Liang, X.; Fu, Z.; Chou, S. Y. Nano Letters. 2007, 7, 3840. crossref(new window)

Wang, X.; Zhi, L. J.; Tsao, N.; Tomovic, Z.; Li, J. L.; Mullen, K. Angew. Chem. Int. Ed. 2008, 47, 2990. crossref(new window)

Geim, A. K.; Novoselov, K. S. Nature Mater. 2007, 6, 183. crossref(new window)

Pantea, D.; Darmstadt, H.; Kaliaguine, S.; Summchen, L.; Roy, C. Carbon 2001, 39, 1147. crossref(new window)

Probst, N.; Grivei, E. Carbon 2002, 40, 201. crossref(new window)

Celzard, A.; Mareche, J. F.; Payot, F.; Furdin, G. Carbon 2002, 40, 2801. crossref(new window)

Sanchez-Gonzalez, J.; Macias-Garcia, A.; Alexandre- Franco, M. F.; Gomez-Serrano, V. Carbon 2005, 43, 741. crossref(new window)

Deprez, N.; McLachlan, D. S. J. Phys. D: Appl. Phys. 1988, 21, 101. crossref(new window)

William, S. H.; Richard, E. O. J. Am. Chem. Soc. 1958, 80, 1339. crossref(new window)

Kovtyukhova, N. I.; Ollivier, P. J.; Martin, B. R.; Mallouk, T. E.; Chizhik, S. A.; Buzaneva, E. V.; Gorchinskiy, A. D. Chem. Mater. 1999, 11, 771. crossref(new window)

Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Carbon 2007, 45, 1558. crossref(new window)

Mathur, R. B.; Dhakate, S. R.; Gupta, D. K.; Dhami, T. L.; Aggarwal, R. K. J. Mater. Process. Technol. 2008, 203, 184. crossref(new window)