JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Electrical Conductivity of Chemically Reduced Graphene Powders under Compression
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 11, Issue 2,  2010, pp.90-95
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2010.11.2.090
 Title & Authors
Electrical Conductivity of Chemically Reduced Graphene Powders under Compression
Rani, Adila; Nam, Seung-Woong; Oh, Kyoung-Ah; Park, Min;
  PDF(new window)
 Abstract
Carbon materials such as graphite and graphene exhibit high electrical conductivity. We examined the electrical conductivity of synthetic and natural graphene powders after the chemical reduction of synthetic and natural graphite oxide from synthetic and natural graphite. The trend of electrical conductivity of both graphene (synthetic and natural) was compared with different graphite materials (synthetic, natural, and expanded) and carbon nanotubes (CNTs) under compression from 0.3 to 60 MPa. We found that synthetic graphene showed a marked increment in electrical conductivity compared to natural graphene. Interestingly, the total increment in electrical conductivity was greater for denser graphite; however, an opposite behavior was observed in nanocarbon materials such as graphene and CNTs, probably due to the differing layer arrangement of nanocarbon materials.
 Keywords
Synthetic and natural graphite;Graphene;Carbon nanotubes;Electrical conductivity under compression;
 Language
English
 Cited by
1.
Preparation and Characterization of Reduced Graphene Nanosheets via Pre-exfoliation of Graphite Flakes,;;

Bulletin of the Korean Chemical Society, 2012. vol.33. 1, pp.209-214 crossref(new window)
 References
1.
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666. crossref(new window)

2.
Avouris, P.; Chen, Z.; Perebeinos, V. Nature Nanotech. 2007, 2, 605. crossref(new window)

3.
Gilje, S.; Han, S.; Wang, M.; Wang, K. L.; Kaner, R. B. Nano Letters. 2007, 7, 3394. crossref(new window)

4.
Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Nature 2006, 442, 282. crossref(new window)

5.
Liang, X.; Fu, Z.; Chou, S. Y. Nano Letters. 2007, 7, 3840. crossref(new window)

6.
Wang, X.; Zhi, L. J.; Tsao, N.; Tomovic, Z.; Li, J. L.; Mullen, K. Angew. Chem. Int. Ed. 2008, 47, 2990. crossref(new window)

7.
Geim, A. K.; Novoselov, K. S. Nature Mater. 2007, 6, 183. crossref(new window)

8.
Pantea, D.; Darmstadt, H.; Kaliaguine, S.; Summchen, L.; Roy, C. Carbon 2001, 39, 1147. crossref(new window)

9.
Probst, N.; Grivei, E. Carbon 2002, 40, 201. crossref(new window)

10.
Celzard, A.; Mareche, J. F.; Payot, F.; Furdin, G. Carbon 2002, 40, 2801. crossref(new window)

11.
Sanchez-Gonzalez, J.; Macias-Garcia, A.; Alexandre- Franco, M. F.; Gomez-Serrano, V. Carbon 2005, 43, 741. crossref(new window)

12.
Deprez, N.; McLachlan, D. S. J. Phys. D: Appl. Phys. 1988, 21, 101. crossref(new window)

13.
William, S. H.; Richard, E. O. J. Am. Chem. Soc. 1958, 80, 1339. crossref(new window)

14.
Kovtyukhova, N. I.; Ollivier, P. J.; Martin, B. R.; Mallouk, T. E.; Chizhik, S. A.; Buzaneva, E. V.; Gorchinskiy, A. D. Chem. Mater. 1999, 11, 771. crossref(new window)

15.
Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Carbon 2007, 45, 1558. crossref(new window)

16.
Mathur, R. B.; Dhakate, S. R.; Gupta, D. K.; Dhami, T. L.; Aggarwal, R. K. J. Mater. Process. Technol. 2008, 203, 184. crossref(new window)