JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Electrical Enhancement of Polyurethane Composites Filled with Multiwalled Carbon Nanotubes by Controlling their Dispersion and Damage
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 11, Issue 2,  2010, pp.96-101
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2010.11.2.096
 Title & Authors
Electrical Enhancement of Polyurethane Composites Filled with Multiwalled Carbon Nanotubes by Controlling their Dispersion and Damage
Kim, Yoon-Jin; Jang, Yong-Kyun; Kim, Woo-Nyon; Park, Min; Kim, Jun-Kyung; Yoon, Ho-Gyu;
  PDF(new window)
 Abstract
Dispersion of the functionalized multiwalled nanotubes (MWNT) in the polyurethane (PU) matrix and DC conductivity of the MWNT/PU composites are investigated with the oxidation conditions, the kind of surfactants and their content. First, the most optimal surfactant type and its critical micelle concentration in the MWNT suspension are determined as a cationic surfactant, benzalkonium chloride (BKC) of 0.6 wt.% to the MWNT content from DEA and FESEM results. All the MWNT oxidized under several conditions are negatively charged and functionalized with carboxylic group, whereas the degree of damage is different from oxidation conditions. In addition, each MWNT/PU composite derived from several oxidation conditions shows different DC conductivity at a characteristic MWNT content. It is found that in order to enhance DC conductivity of the polymeric composites containing the oxidized MWNT the better dispersion of MWNT should be obtained by effective functionalities and surfactant adsorption with preserving the intrinsic geometry of pristine MWNT.
 Keywords
Oxidation;DC conductivity;Surfactant;HRTEM;MWNT;
 Language
English
 Cited by
1.
A review of the preparation and properties of carbon nanotubes-reinforced polymer compositess,;;

Carbon letters, 2011. vol.12. 2, pp.57-69 crossref(new window)
1.
A review of the preparation and properties of carbon nanotubes-reinforced polymer compositess, Carbon letters, 2011, 12, 2, 57  crossref(new windwow)
 References
1.
Ando, Y.; Zhao, X.; Shimoyama, H.; Sakai, G.; Kaneto, K. Inter. J. Inorganic Mater. 1999, 1, 77. crossref(new window)

2.
Kim, Y. J.; Shin, T. S.; Choi H. D.; Kwon, J. H.; Chung, Y. C.; Yoon, H. G. Carbon 2005, 43, 23. crossref(new window)

3.
Kuzmany, H.; Kukovecz, A.; Simon, F.; Holzweber, M.; Kramberger, C. H.; Pichler, T. Synthetic Metals 2004, 141, 113. crossref(new window)

4.
Sloan, J.; Green, M. L. H. "Encapsulation and crystallization behavior of materials inside carbon nanotube", Vol. 5, ed. Nalwa H.S., Academic Press, New York, 2000, 407.

5.
Vaccarini, L.; Goze, C.; Aznar, R.; Micholet, V.; Journet, C.; Bernier, P. Synthetic Metals 1999, 103, 2492. crossref(new window)

6.
Ago, H.; Cacialli, F.; Petritsch, K.; Friend, R. H.; Kugler, T. H.; Salaneck, W. R.; Ono, Y.; Yamabe, T.; Tanaka, K. Synthetic Metals 1999, 103, 2494. crossref(new window)

7.
Appenzeller, J.; Joselevich, E.; H nlen, W. "Nanoelectronics and information technology", Darmstadt: Wiley-VCH Gmbh & Co. 2003, 475.

8.
Lu, Z.; Luo, C. Phys. Lett. A 2001, 289, 121. crossref(new window)

9.
Endo, M.; Saito, R.; Dresselhaus, G. chapter "From Carbon Fibers to Nanotubes", ed. By T. W. Ebbessen, B. Raton, CRC Press, 1997, Chap. 9.

10.
Bonard, J. M.; Stora, T.; Salvetat, J. P.; Maier, F.; Stockli, T.; Duschl, C.; Forro, L.; Heer, W. A.; Chatelain, A. Adv. Mater. 1997, 9, 827. crossref(new window)

11.
Atkin, R.; Craig, U. S. J.; Wanless, E. J.; Biggs, S. Adv. Collid. Interface Sci. 2003, 103, 219. crossref(new window)

12.
Ramasubramaniam, R. J. Chem. Appl. Phys. Lett. 2003, 83, 2928. crossref(new window)

13.
Rao, C. N. R.; Sen, R. Chem. Commun. 1998, 15, 1525.

14.
Peng, J.; Qu, X.; Wei, G.; Li, J.; Qiao, J. Carbon 2004, 42, 2741. crossref(new window)