Advanced SearchSearch Tips
Potential of Activated Carbon Derived from Local Common Reed in the Refining of Raw Cane Sugar
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 11, Issue 3,  2010, pp.192-200
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2010.11.3.192
 Title & Authors
Potential of Activated Carbon Derived from Local Common Reed in the Refining of Raw Cane Sugar
D-Abdullah, Ibrahim; Girgis, Badie S.; Tmerek, Yassin M.; Badawy, Elsaid H.;
  PDF(new window)
Common reed (Fragmites australis), a local invasive grass, was investigated as a possible feedstock for the production of activated carbon. Dried crushed stems were subjected to impregnation with phosphoric acid (30, 40 and 50%) followed by pyrolysis at with final washing and drying. Obtained carbons were characterized by determining: carbon yield, ash content, slurry pH, textural properties and capacity to remove color bodies from factory-grade sugar liquor. Produced carbons possessed surface area up to 700 , total pore volumes up to 0.37 , and proved to be microporous in nature. Decolorization of hot sugar liquor at showed degrees of color removal of 60 up to 77% from initial color of 1100~1300 ICU, at a carbon dose of 1.0 g/100 ml liquor. No correlation seems to hold between synthesis conditions and % R but depends on the degree of microporosity. A commercial activated carbon N showed a comparative better color removal capacity of 91%. Common reed proved to be a viable carbon precursor for production of good adsorbing carbon suitable for decolorization in the sugar industry, as well as in other environmental remediation processes.
Activated carbon;Porosity;Sugar refining;
 Cited by
Superhydrophobic carbon-based materials: a review of synthesis, structure, and applications,Meng, Long-Yue;Park, Soo-Jin;

Carbon letters, 2014. vol.15. 2, pp.89-104 crossref(new window)
Activated carbons derived from residual biomass pyrolysis and their CO2 adsorption capacity, Journal of Analytical and Applied Pyrolysis, 2014, 110, 322  crossref(new windwow)
Electrochemical and structural characteristics of activated carbon-based electrodes modified via phosphoric acid, Microporous and Mesoporous Materials, 2013, 172, 131  crossref(new windwow)
Improved capacitance characteristics of activated carbon-based electrodes by physicochemical base-tuning, Journal of Industrial and Engineering Chemistry, 2012, 18, 2, 642  crossref(new windwow)
Superhydrophobic carbon-based materials: a review of synthesis, structure, and applications, Carbon letters, 2014, 15, 2, 89  crossref(new windwow)
Chen, J. C. P. "Cane Sugar Technology", 11th ed., Wiley Interscience Publications, John Wiley & Sons Inc., USA, 1985.

Mersad, A.; Lewandowski, R.; Heyd, B.; Decloux, M. ISJ 2003, 105, 269.

Clark, M. A.; Blanco R. S.; Godshall, M. A. ISSCT 1986, 4, 670.

Riffer, R. Proc. SIT 1997, 716 (A), 114.

Tatoud, I.; Jacob, S.; Liou, J. K.; Bento, S. M.; Decloux, M. Proc. SIT 1998, 741 (B), 223.

Decloux, M.; Tatoud, I.; Mersad, A. Zuckerind 2000, 125,106.

Lancrenon, X.; Herve, D.; Rousset, F. Proc. SIT 1998, 741 (B), 726.

Lancrenon, X. ISJ 2003, 105, 390.

Baikow, V. E. "Manufacture and refining of raw cane sugar", Amesterdam, Oxford, New York, 1982, 156.

Van der Poel, P. W.; Schiweck, H.; Schwarz, T. "Sugar Technology : Beet and Cane Sugar Manufacture", Verlag Dr. Albert Bartens KG, Berlin. 1998.

Girgis, B. S.; Khalil, L. B.; Tawfik, T. A. M. Adsorp. Sci. Technol. 2000, 18, 373. crossref(new window)

Girgis, B. S.; EL-Hendawy, A. N. A. Micropor. Mesopor. Mats. 2002, 52, 105. crossref(new window)

Attia, A. A.; Girgis, B. S.; Khedr, S. A. J. Chem. Technol. Biotechnol. 2003, 78, 611. crossref(new window)

Attia, A. A.; Girgis, B. S.; Tawfik N. A. F., Carbon Sci. 2005, 6, 1.

Kobya, M.; Demirbas, E.; Senlurk, E.; Ince, M. Bioresource Technol. 2005, 96, 1518. crossref(new window)

Wartelle, L. H.; Marshall, W. E. J. Chem. Technol. Biotechnol. 2001, 76, 451. crossref(new window)

Girgis, B. S.; Yunis, S. S.; Soliman, A. M. Materials Letts. 2002, 57, 146. crossref(new window)

Warhurst A. M.; McConnachie, G. L.; Pollard, S. J. T. Water Res., 1997, 31, 757.

Kalavathy, M. H.; Karthikeyan, T.; Rajgopal, S.; Miranda, R. J. Colloid Inter. Sci. 2005, 292, 354. crossref(new window)

de Celis, J.; Amadeo, N. E.; Cukierman, A. L. J. Hazard. Mats. 2009, 16, 217.

Gomez-Serano, V.; Cuerde-Correa, E. M.; Fernandez-Gonzalez, M. C.; Alexandre-Franco, M. F.; Macias-Garcia, A. Materials Letts. 2005, 59, 846. crossref(new window)

Girgis, B. S.; Smith, E.; Louis, M. M.; EL-Hendawy, A. N. A. J. Anal. Appl. Pyr. 2009, 86, 180. crossref(new window)

Guo, Y.; Yu, K.; Wang, Z.; Xu, H. Carbon 2000, 41, 1645.

Rashwan, W. E.; Girgis, B. S. Adsorp. Sci. Technol. 2004, 22, 181. crossref(new window)

Marshall, W. E.; Ahmedna, M.; Rao, R. M.; Johns, M. M. Int. Sugar JNL 2000, 102, 147.

Tseng, R.-L.; Tseng, S.-K. J. Coll. Interface Sci. 2005, 287, 428. crossref(new window)

Basso, M. C.; Cerella, E. G.; Cukierman, A. L. Ind. Eng. Chem. Res. 2002, 41, 180. crossref(new window)

Byrne, J. F.; Marsh, H. "Porosity in activated carbons", Ed. J.W. Patrick, Edward Arnold Inc., London, 1995.

Puziy, A. M.; Poddubnaya, O. I.; Martinez-Alonso, A.; Suarez-Garcia, F.; Tascon,J. M. D. Appl. Surf. Sci. 2002, 200, 196. crossref(new window)

Puziy, A. M.; Poddubnaya, O. I.; Martinez-Alonso, A.; Suarez-Gorcia, F.; Tascon, J. M. D. Carbon 2005, 43, 2857. crossref(new window)

IUPAC Pure & Appl. Chem. 1994, 66, 1739. crossref(new window)

Selles-Perez, M. J.; Martin-Martinez, J. M. J. Chem. Soc. Faraday Trans. 1991, 87, 1237. crossref(new window)