Advanced SearchSearch Tips
Fabrication and Electrical, Thermal and Morphological Properties of Novel Carbon Nanofiber Web/Unsaturated Polyester Composites
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 11, Issue 4,  2010, pp.285-292
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2010.11.4.285
 Title & Authors
Fabrication and Electrical, Thermal and Morphological Properties of Novel Carbon Nanofiber Web/Unsaturated Polyester Composites
Kim, Seong-Hwan; Kwon, Oh-Hyeong; Cho, Dong-Hwan;
  PDF(new window)
Novel unsaturated polyester composites with PAN-based nanofiber, stabilized PAN nanofiber, and carbonized nanofiber webs have been fabricated, respectively, and the effects of the nanofiber web content on their electrical resistivity, the thermal stability, dynamic storage modulus, and fracture surfaces were studied. The result demonstrated that the introduction of just one single layer (which is corresponding to 2 wt.%) of the carbonized nanofiber web to unsaturated polyester resin (UPE) could contribute to reducing markedly the electrical resistivity of the resin reflecting the percolation threshold, to improving the storage modulus, and to increasing the thermal stability above . The effect on decreasing the resistivity and increasing the modulus was the greatest at the carbonized PAN nanofiber web content of 8 wt.%, particularly showing that the storage modulus was increased about 257~283% in the measuring temperature range of to . The result also exhibited that the carbonized PAN nanofibers were distributed uniformly and compactly in the unsaturated polyester, connecting the matrix three-dimensionally through the thickness direction of each specimen. It seemed that such the fiber distribution played a role in reducing the electrical resistivity as well as in improving the dynamic storage modulus.
Electrospinning;PAN-based nanofiber web;Carbon nanofiber web/unsaturated polyester composites;Carbonization;Fabrication;Properties;
 Cited by
Bourrat, X. Carbon 1993, 31, 287. crossref(new window)

Thongruang, W.; Spontak, R. J.; Balik, C. M. Polymer 2002, 43, 3717. crossref(new window)

Pantea, D.; Darmstadt, H.; Kaliaguine, S.; Roy, C. Appli. Surf. Sci. 2003, 217, 181. crossref(new window)

Maruyama, B.; Alam, K. SAMPE J. 2002, 38, 59.

Li, J.; Wong, P.-S.; Kim, J.-K. Mater. Sci. Eng. A 2008, 483/484, 660. crossref(new window)

Hao, X.; Gai, G.; Yang, Y.; Zhang, Y.; Nan, C.-W. Mater. Chem. Phys. 2008, 109, 15.

Kim, S.; Do, I.; Drzal, L. T. Macromol. Mater. Eng. 2009, 292, 196.

Kalaitzidou, K.; Fukushima, H.; Drzal, L. T. Materials 2010, 3, 1089. crossref(new window)

Kuilla, T.; Bhadra, S.; Yao, D.; Kim, N. H.; Bose, S.; Lee, J. H. Prog. Polym. Sci. 2010, 35, 1350. crossref(new window)

Margolis, J. M. "Conductive Polymers and Plastics", Chapman and Hall, New York, 1989, Chapter 1.

Kim. S.; Drzal, L. T. J. Adh. Sci. Tech. 2009, 23, 1623. crossref(new window)

Bhardwaj, N.; Kundu, S. C. Biotech. Adv. 2010, 28, 325. crossref(new window)

D. H. Reneker, D. H.; Chun, I. Nanotechnology 1996, 7, 216. crossref(new window)

Deitzel, J. M.; Tan, N. C. B.; Kleinmeyer, J. D.; Rehrmann, J.; Tevault, D.; Reneker, D.; Sendijarevic, I.; McHugh, A. "Generation of Polymer Nanofibers through Electrospinning", U.S. Army Research Laboratory Report, APL0TR-1989, 1999.

Esrafilzadeh, D.; Morshed, M.; Tavanai, H. Synth. Metals 2009, 159, 267. crossref(new window)

Kim, C.; Yang, K. S. Carbon Sci. 2002, 3, 210.

Cho, C. W.; Cho, D.; Ko, Y.-G.; Kwon, O. H.; Kang, I. K. Carbon Lett. 2007, 8, 313. crossref(new window)

Zhou, Z.; Lai, C.; Zhang, L.; Qian, Y.; Hou, H.; Reneker, D. H.; Fong, H. Polymer 2009, 50, 2999. crossref(new window)