JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Influence of Glycidyl Methacrylate Grafted Multi-walled Carbon Nanotubes on Viscoelastic Behaviors of Polypropylene Nanocomposites
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 11, Issue 4,  2010, pp.311-315
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2010.11.4.311
 Title & Authors
Influence of Glycidyl Methacrylate Grafted Multi-walled Carbon Nanotubes on Viscoelastic Behaviors of Polypropylene Nanocomposites
Shim, Young-Sun; Park, Soo-Jin;
  PDF(new window)
 Abstract
In this work, the effect of glycidyl methacrylate grafted multi-walled carbon nanotubes (GMA-MWCNTs) on the viscoelastic behaviors of polypropylene (PP) based nanocomposites was studied. The GMA-MWCNTs/PP was prepared using a bravender at by melt mixing as a function of GMA-MWCNT content. The viscoelastic behaviors of GMA-MWCNTs/PP nanocomposites were measured by a rheometer. It was found that the GMA-MWCNTs were homogeneously dispersed in the PP matrix. The GMA-MWCNTs/PP nanocomposites showed higher storage modulus, loss modulus, and shear viscosity compared to pure PP nanocomposites and the maximum value was shown at 2.0 wt% GMA-MWCNTs loading. These results were probably attributed to the strong interfacial interaction between the GMA-MWCNT and the PP matrix.
 Keywords
Viscoelastic behaviors;Glycidyl methacrylate;Multi-walled carbon nanotubes;
 Language
English
 Cited by
1.
알킬화가 다중벽탄소나노튜브로 강인화된 에폭시수지의 계면 및 열전도도에 미치는 영향,허건영;이경엽;박수진;

폴리머, 2011. vol.35. 6, pp.548-552
2.
A review of the preparation and properties of carbon nanotubes-reinforced polymer compositess,;;

Carbon letters, 2011. vol.12. 2, pp.57-69 crossref(new window)
3.
Electrical, Thermal, and Rheological Properties of Carbon Black and Carbon Nanotube Dual Filler-Incorporated Poly(dimethylsiloxane) Nanocomposites,;;;

Macromolecular research, 2012. vol.20. 5, pp.465-472 crossref(new window)
1.
Effect of polystyrene-grafted multi-walled carbon nanotubes on the viscoelastic behavior and electrical properties of polypropylene-based nanocomposites, Research on Chemical Intermediates, 2012, 38, 9, 2123  crossref(new windwow)
2.
Effect of Multi Wall Carbon Nanotube Content on The Electrical and Rheological Properties of Polypropylene-based Nanocomposites, MATEC Web of Conferences, 2016, 78, 01092  crossref(new windwow)
3.
Electrical, thermal, and rheological properties of carbon black and carbon nanotube dual filler-incorporated poly(dimethylsiloxane) nanocomposites, Macromolecular Research, 2012, 20, 5, 465  crossref(new windwow)
4.
A review of the preparation and properties of carbon nanotubes-reinforced polymer compositess, Carbon letters, 2011, 12, 2, 57  crossref(new windwow)
5.
Design and fabrication of molecularly imprinted polymer-based potentiometric sensor from the surface modified multiwalled carbon nanotube for the determination of lindane (γ-hexachlorocyclohexane), an organochlorine pesticide, Biosensors and Bioelectronics, 2015, 64, 586  crossref(new windwow)
 References
1.
Dai, L. M.; Mau, A. W. H. Adv. Mater. 2001, 13, 899. crossref(new window)

2.
Baughman, R. H.; Zakhidov, A. A.; De Heer, W. A. Science 2002, 297, 787. crossref(new window)

3.
Sun, Y. P.; Fu, K. F.; Lin, Y.; Huang, W. J. Acc. Chem. Res. 2002, 35, 1096. crossref(new window)

4.
Dai, H. J. Surf. Sci. 2002, 500, 218. crossref(new window)

5.
Modi, A.; Koratkar, N.; Lass, E.; Wei, B. Q.; Ajayan, P. M. Nature 2003, 424, 171. crossref(new window)

6.
Ghosh, S.; Sood, A. K.; Kumar, N. Science 2003, 299, 1042. crossref(new window)

7.
Tans, S. J.; Verschueren, A. R. M.; Dekker, C. Nature 1998, 393, 49. crossref(new window)

8.
Postma, H. W. C.; Teepen, T.; Yao, Z.; Grifoni, M.; Dekker, C. Science 2001, 293, 76. crossref(new window)

9.
Javey, A.; Kim, H.; Brink, M.; Wang, Q.; Ural, A.; Guo, J.; Mcintyre, P.; Mceuen, P.; Lundstrom, M.; Dai, H. J. Nat. Mater. 2002, 1, 241. crossref(new window)

10.
Bachtold, A.; Hadley, P.; Nakanishi, T.; Dekker, C. Science 2001, 294, 1317.

11.
Sung, Y. T.; Han, M. S.; Song, K. H.; Jung, J. W.; Lee, H. S.; Kum, C. K.; Joo, J.; Kim, W. N. Polymer 2006, 47, 4434. crossref(new window)

12.
Fischer, J. E.; Dai, H.; Thess, A.; Lee, R.; Hanjani, N. M.; Dehaas, D. L. Phys. Rev. B. 1997, 55, 4921. crossref(new window)

13.
Zdenko, S.; Dimitrios, T.; Konstantinos, P.; Costas, G. Prog. Polym. Sci. 2010, 35, 357. crossref(new window)

14.
Mohammed, H. A.; Uttandaramen, S. Carbon 2009, 47, 2. crossref(new window)

15.
Hou, P. X.; Liu, C.; Cheng, H. M. Carbon 2008, 46, 2003. crossref(new window)

16.
Zheng, Y.; Zhang, J.; Xidadong, Z.; Chen, W.; Wang, R. J. Appl. Polym. Sci. 2009, 112, 1755. crossref(new window)

17.
Meyyappan, M. "Carbon Nanotubes Science and Applications", CRC press, Boca Raton, 2005, ???.

18.
Park, S. J. "Interfacial Forces and Fields: Theory and Application", ed. J. P. Hsu, Marcel Dekker, New York, 1999, Chap 9.

19.
Lee, Y. S.; Im, J. S.; Yun, S. M.; Nho, Y. C.; Kang, P. H.; Jin, H. K. Carbon Lett. 2009, 10, 314. crossref(new window)

20.
Kim, K. S.; Choi, K. E.; Park, S. J. Carbon Lett. 2009, 10, 335 crossref(new window)

21.
Lee, S. H.; Kim, M. W.; Kim, S. H.; Youn, J. R. Europ. Polym. J. 2008, 44, 1620. crossref(new window)

22.
Seo, M. K.; Lee, J. R.; Park, S. J. J. Mater. Sci. Eng. A. 2005, 404, 79. crossref(new window)