Advanced SearchSearch Tips
Molecular Dynamics Simulations of Graphite-Vinylester Nanocomposites and Their Constituents
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 11, Issue 4,  2010, pp.316-324
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2010.11.4.316
 Title & Authors
Molecular Dynamics Simulations of Graphite-Vinylester Nanocomposites and Their Constituents
Alkhateb, H.; Al-Ostaz, A.; Cheng, A.H.D.;
  PDF(new window)
The effects of geometrical parameters on mechanical properties of graphite-vinylester nanocomposites and their constituents (matrix, reinforcement and interface) are studied using molecular dynamics (MD) simulations. Young`s modulii of 1.3 TPa and 1.16 TPa are obtained for graphene layer and for graphite layers respectively. Interfacial shear strength resulting from the molecular dynamic (MD) simulations for graphene-vinylester is found to be 256 MPa compared to 126 MPa for graphitevinylester. MD simulations prove that exfoliation improves mechanical properties of graphite nanoplatelet vinylester nanocomposites. Also, the effects of bromination on the mechanical properties of vinylester and interfacial strength of the graphene.brominated vinylester nanocomposites are investigated. MD simulation revealed that, although there is minimal effect of bromination on mechanical properties of pure vinylester, bromination tends to enhance interfacial shear strength between graphite-brominated vinylester/graphene-brominated vinylester in a considerable magnitude.
Molecular dynamics simulation;Exfoliated graphene nano-platelets;Graphite-vinylester nanocomposites;
 Cited by
Correlating Micromorphology and Nanomorphology to High Strain Rate Performance of Nanoparticle Reinforced Polymeric Materials, Journal of Nanomechanics and Micromechanics, 2012, 2, 4, 55  crossref(new windwow)
Mechanical and Thermal Properties of Thermoset-Graphene Nanocomposites, Macromolecular Materials and Engineering, 2016, 301, 3, 231  crossref(new windwow)
Importance of Unit Cells in Accurate Evaluation of the Characteristics of Graphene, Zeitschrift für Naturforschung A, 2016, 71, 4  crossref(new windwow)
Atomistic modeling of graphene/hexagonal boron nitride polymer nanocomposites: a review, Wiley Interdisciplinary Reviews: Computational Molecular Science, 2017, 17590876, e1346  crossref(new windwow)
Varley, R. J.; Groth, A. M.; Leong, K. H. Compos. Sci. Tech. 2007, 68, 2882.

Meyer, J. C.; Geim, A. K.; Kastnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. Nature 2007, 446, 60. crossref(new window)

Figiel, L.; Buckley, C. P. Comput. Mater. Sci. 2008, inpress.

Valavala, P. K.; Odegard, G. M. IUTAM Symp. Modelling Nanomaterials and Nanosystems: Proc. IUTAM Symp., Aalborg, Denmark, 2008, 19.

Zeng, Q. H.; Yu, A. B.; Lu, G. Q. Progr. Polym. Sci. 2007,33, 191.

Harkin- Jones, E.; Figiel, L.; Spencer, P.; Abu-Zurayk, R.; Al-Shabib, W.; Chan, V.; Rajeev, R.; Soon, K.; Buckley, P.; Sweeney, J.; Menary, G.; Armstrong, C.; Assender, H.; Coates, P.; Dunne, F.; McNally, T.; Martin, P. Plastics, Rubber & Composites 2008, 37, 113. crossref(new window)

Lan, T. T.; Kaviratna, P. D.; Pinnavaia, T. J. J. Chem. Mater. 1995, 7, 2144. crossref(new window)

Lan, T. T.; Pinnavaia, T. J. Proc. Mat. Res. Soc. Symp. 1996, 435.

Vaia, R. A.; Price, G.; Ruth, P. N.; Nguyen, H. T.; Lichtenhan, J. Appl. Clay Sci. 1999, 15, 67. crossref(new window)

LeBaron, P. C.; Wang, Z.; Pinnavaia, T. J. Appl. Clay Sci. 1999, 15, 11. crossref(new window)

Mouras, S.; Hamm A.; Djurado, D.; Cousseins, J. C. Revue de Chimie Minerale 1987, 24, 572.

Novoselov, A. K.; Geim, A. K.; Morsozov, S. V.; Jaing, D.; Zhang, Y.; Dubonus, S. V.; Grigrieva, I. V.; Firsov, A. A. Science 2004, 306, 666. crossref(new window)

Novoselov, K. S.; Jaing, D.; Booth, T. J.; Khotkevich, V. V.; Morzov, S. V.; Geim, A. K. PNAS 2005, 102, 10451. crossref(new window)

Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Science 2008, 321, 385. crossref(new window)


Karger-Kocsis, J., Gryshchuk, O., Schmitt, S. J. Mater. Sci. 2003, 38, 413. crossref(new window)

Derkane $Momentum^{TM}$ 640-900. Epoxy Vinyl Ester Resin, 2004.

Gou, J.; Minaie, B.; Wang, B.; Liang, Z.; Zhang, C. Comput. Mater. Sci. 2004, 31, 225. crossref(new window)

Wagner, H. D.; Vaia, R. A. Materials Today 2004, 7, 38, crossref(new window)

Liao, K; Li, S. Appl. Phys. Lett. 2001, 79, 4225. crossref(new window)

Xiao, M.; Sun, L.; Liu, J.; Li., Y.; Gong, K. Polymer 2001, 43, 2245.

Leach, R. A. "Molecular Modeling Principles and Application", Pearson Education, EMA, 2001, Chapter 1.

MS Modeling 4.0 Online Help Manual, Accelrys Inc., 2005.

Sun, H. J. Phys. Chem. B 1998, 102, 7338. crossref(new window)

Al-Ostaz, A.; Pal, G. J. Mater. Sci. 2008, 43, 164. crossref(new window)