JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Molecular Dynamics Simulations of Graphite-Vinylester Nanocomposites and Their Constituents
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 11, Issue 4,  2010, pp.316-324
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2010.11.4.316
 Title & Authors
Molecular Dynamics Simulations of Graphite-Vinylester Nanocomposites and Their Constituents
Alkhateb, H.; Al-Ostaz, A.; Cheng, A.H.D.;
  PDF(new window)
 Abstract
The effects of geometrical parameters on mechanical properties of graphite-vinylester nanocomposites and their constituents (matrix, reinforcement and interface) are studied using molecular dynamics (MD) simulations. Young`s modulii of 1.3 TPa and 1.16 TPa are obtained for graphene layer and for graphite layers respectively. Interfacial shear strength resulting from the molecular dynamic (MD) simulations for graphene-vinylester is found to be 256 MPa compared to 126 MPa for graphitevinylester. MD simulations prove that exfoliation improves mechanical properties of graphite nanoplatelet vinylester nanocomposites. Also, the effects of bromination on the mechanical properties of vinylester and interfacial strength of the graphene.brominated vinylester nanocomposites are investigated. MD simulation revealed that, although there is minimal effect of bromination on mechanical properties of pure vinylester, bromination tends to enhance interfacial shear strength between graphite-brominated vinylester/graphene-brominated vinylester in a considerable magnitude.
 Keywords
Molecular dynamics simulation;Exfoliated graphene nano-platelets;Graphite-vinylester nanocomposites;
 Language
English
 Cited by
1.
Effects of morphologies of carbon nanofillers on the interfacial and deformation behavior of polymer nanocomposites – A molecular dynamics study, Carbon, 2016, 107, 510  crossref(new windwow)
2.
Mechanical behavior of high density polyethylene and its carbon nanocomposites under quasi-static and dynamic compressive and tensile loadings, Polymer Testing, 2015, 41, 106  crossref(new windwow)
3.
Correlating Micromorphology and Nanomorphology to High Strain Rate Performance of Nanoparticle Reinforced Polymeric Materials, Journal of Nanomechanics and Micromechanics, 2012, 2, 4, 55  crossref(new windwow)
4.
A novel combined molecular dynamics–micromechanics method for modeling of stiffness of graphene/epoxy nanocomposites with randomly distributed graphene, Materials & Design, 2014, 64, 96  crossref(new windwow)
5.
Mechanical and Thermal Properties of Thermoset-Graphene Nanocomposites, Macromolecular Materials and Engineering, 2016, 301, 3, 231  crossref(new windwow)
6.
DNA Origami Nanopatterning on Chemically Modified Graphene, Angewandte Chemie International Edition, 2012, 51, 4, 912  crossref(new windwow)
7.
DNA Origami Nanopatterning on Chemically Modified Graphene, Angewandte Chemie, 2012, 124, 4, 936  crossref(new windwow)
8.
A molecular dynamic simulation study of mechanical properties of graphene–polythiophene composite with Reax force field, Physics Letters A, 2016, 380, 4, 628  crossref(new windwow)
9.
Importance of Unit Cells in Accurate Evaluation of the Characteristics of Graphene, Zeitschrift für Naturforschung A, 2016, 71, 4  crossref(new windwow)
 References
1.
Varley, R. J.; Groth, A. M.; Leong, K. H. Compos. Sci. Tech. 2007, 68, 2882.

2.
Meyer, J. C.; Geim, A. K.; Kastnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. Nature 2007, 446, 60. crossref(new window)

3.
Figiel, L.; Buckley, C. P. Comput. Mater. Sci. 2008, inpress.

4.
Valavala, P. K.; Odegard, G. M. IUTAM Symp. Modelling Nanomaterials and Nanosystems: Proc. IUTAM Symp., Aalborg, Denmark, 2008, 19.

5.
Zeng, Q. H.; Yu, A. B.; Lu, G. Q. Progr. Polym. Sci. 2007,33, 191.

6.
Harkin- Jones, E.; Figiel, L.; Spencer, P.; Abu-Zurayk, R.; Al-Shabib, W.; Chan, V.; Rajeev, R.; Soon, K.; Buckley, P.; Sweeney, J.; Menary, G.; Armstrong, C.; Assender, H.; Coates, P.; Dunne, F.; McNally, T.; Martin, P. Plastics, Rubber & Composites 2008, 37, 113. crossref(new window)

7.
Lan, T. T.; Kaviratna, P. D.; Pinnavaia, T. J. J. Chem. Mater. 1995, 7, 2144. crossref(new window)

8.
Lan, T. T.; Pinnavaia, T. J. Proc. Mat. Res. Soc. Symp. 1996, 435.

9.
Vaia, R. A.; Price, G.; Ruth, P. N.; Nguyen, H. T.; Lichtenhan, J. Appl. Clay Sci. 1999, 15, 67. crossref(new window)

10.
LeBaron, P. C.; Wang, Z.; Pinnavaia, T. J. Appl. Clay Sci. 1999, 15, 11. crossref(new window)

11.
Mouras, S.; Hamm A.; Djurado, D.; Cousseins, J. C. Revue de Chimie Minerale 1987, 24, 572.

12.
Novoselov, A. K.; Geim, A. K.; Morsozov, S. V.; Jaing, D.; Zhang, Y.; Dubonus, S. V.; Grigrieva, I. V.; Firsov, A. A. Science 2004, 306, 666. crossref(new window)

13.
Novoselov, K. S.; Jaing, D.; Booth, T. J.; Khotkevich, V. V.; Morzov, S. V.; Geim, A. K. PNAS 2005, 102, 10451. crossref(new window)

14.
Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Science 2008, 321, 385. crossref(new window)

15.
http://en.wikipedia.org/wiki/Graphene.

16.
Karger-Kocsis, J., Gryshchuk, O., Schmitt, S. J. Mater. Sci. 2003, 38, 413. crossref(new window)

17.
Derkane $Momentum^{TM}$ 640-900. Epoxy Vinyl Ester Resin, 2004.

18.
Gou, J.; Minaie, B.; Wang, B.; Liang, Z.; Zhang, C. Comput. Mater. Sci. 2004, 31, 225. crossref(new window)

19.
Wagner, H. D.; Vaia, R. A. Materials Today 2004, 7, 38, crossref(new window)

20.
Liao, K; Li, S. Appl. Phys. Lett. 2001, 79, 4225. crossref(new window)

21.
Xiao, M.; Sun, L.; Liu, J.; Li., Y.; Gong, K. Polymer 2001, 43, 2245.

22.
Leach, R. A. "Molecular Modeling Principles and Application", Pearson Education, EMA, 2001, Chapter 1.

23.
MS Modeling 4.0 Online Help Manual, Accelrys Inc., 2005.

24.
Sun, H. J. Phys. Chem. B 1998, 102, 7338. crossref(new window)

25.
Al-Ostaz, A.; Pal, G. J. Mater. Sci. 2008, 43, 164. crossref(new window)