JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Effect of Interphase Modulus and Nanofiller Agglomeration on the Tensile Modulus of Graphite Nanoplatelets and Carbon Nanotube Reinforced Polypropylene Nanocomposites
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 11, Issue 4,  2010, pp.325-331
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2010.11.4.325
 Title & Authors
Effect of Interphase Modulus and Nanofiller Agglomeration on the Tensile Modulus of Graphite Nanoplatelets and Carbon Nanotube Reinforced Polypropylene Nanocomposites
Karevan, Mehdi; Pucha, Raghuram V.; Bhuiyan, Md.A.; Kalaitzidou, Kyriaki;
  PDF(new window)
 Abstract
This study investigates the effect of filler content (wt%), presence of interphase and agglomerates on the effective Young`s modulus of polypropylene (PP) based nanocomposites reinforced with exfoliated graphite nanoplatelets () and carbon nanotubes (CNTs). The Young`s modulus of the composites is determined using tensile testing based on ASTM D638. The reinforcement/polymer interphase is characterized in terms of width and mechanical properties using atomic force microscopy which is also used to investigate the presence and size of agglomerates. It is found that the interphase has an average width of ~30 nm and modulus in the range of 5 to 12 GPa. The Halpin-Tsai micromechanical model is modified to account for the effect of interphase and filler agglomerates and the model predictions for the effective modulus of the composites are compared to the experimental data. The presented results highlight the need of considering various experimentally observed filler characteristics such as agglomerate size and aspect ratio and presence and properties of interphase in the micromechanical models in order to develop better design tools to fabricate multifunctional polymer nanocomposites with engineered properties.
 Keywords
Graphite nanoplatelet;Carbon nanotube;Polymer nanocomposites;Modulus;
 Language
English
 Cited by
1.
A review of the preparation and properties of carbon nanotubes-reinforced polymer compositess,;;

Carbon letters, 2011. vol.12. 2, pp.57-69 crossref(new window)
2.
Effect of exfoliated graphite nanoplatelets on the fracture surface morphology and the electrical resistivity of phenylethynyl-terminated polyimide,;;;

Carbon letters, 2012. vol.13. 2, pp.121-125 crossref(new window)
3.
Bridge effect of carbon nanotubes on the electrical properties of expanded graphite/poly(ethylene terephthalate) nanocomposites,;;

Carbon letters, 2012. vol.13. 1, pp.51-55 crossref(new window)
1.
Understanding the effect of silica nanoparticles and exfoliated graphite nanoplatelets on the crystallization behavior of isotactic polypropylene, Polymer Engineering & Science, 2015, 55, 3, 672  crossref(new windwow)
2.
A review of the preparation and properties of carbon nanotubes-reinforced polymer compositess, Carbon letters, 2011, 12, 2, 57  crossref(new windwow)
3.
Melt Compounding of Thermoplastic Polyurethanes Incorporating 1D and 2D Carbon Nanofillers, Polymer-Plastics Technology and Engineering, 2016  crossref(new windwow)
4.
Understanding the property enhancement mechanism in exfoliated graphite nanoplatelets reinforced polymer nanocomposites, Composite Interfaces, 2013, 20, 4, 255  crossref(new windwow)
5.
Phenylethynyl-terminated polyimide, exfoliated graphite nanoplatelets, and the composites: an overview, Carbon letters, 2016, 19, 1  crossref(new windwow)
6.
Synergistic effect of graphite nanoplatelets and glass fibers in polypropylene composites, Journal of Applied Polymer Science, 2014, n/a  crossref(new windwow)
7.
Multiscale modeling of the effect of waviness and agglomeration of CNTs on the elastic properties of nanocomposites, Computational Materials Science, 2016, 117, 195  crossref(new windwow)
8.
Effect of exfoliated graphite nanoplatelets on the fracture surface morphology and the electrical resistivity of phenylethynyl-terminated polyimide, Carbon letters, 2012, 13, 2, 121  crossref(new windwow)
9.
Estimation of elastic moduli of particulate-reinforced composites using finite element and modified Halpin–Tsai models, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2016, 38, 4, 1317  crossref(new windwow)
10.
Effect of Carbon-Based Particles on the Mechanical Behavior of Isotactic Poly(propylene)s, Macromolecular Materials and Engineering, 2016, 301, 4, 429  crossref(new windwow)
11.
Elastomeric Coating of Exfoliated Graphite Nanoplatelets with Amine-Terminated Poly(butadiene-co-acrylonitrile): Characterization and Its Epoxy Toughening Effect, Advances in Polymer Technology, 2013, 32, 4, n/a  crossref(new windwow)
 References
1.
Moniruzzaman, M.; Winey, K. I. Macromolecules 2006, 39, 5194. crossref(new window)

2.
Dhakate, S. R.; Sharma, S.; Borah, M.; Mathur, R. B.; Dhami, T. L. Int'l J. Hydrogen Energy 2008, 33, 7146. crossref(new window)

3.
Kalaitzidou, K.; Fukushima, H.; Drzal, L. T. Carbon 2007, 45, 1446. crossref(new window)

4.
Halpin, J. C.; Kardos, J. L. Polym. Eng. Sci. 1976, 16, 344. crossref(new window)

5.
Haggenmueller, R.; Zhou, W.; Fischer, J. E.; Winey, K. I. J. Nanosci. Nanotech. 2003, 3, 105. crossref(new window)

6.
Zhu, J.; Peng, H. Q.; Rodriguez-Macias, F.; Margrave, J. L.; Khabashesku, V. N.; Imam, A. M.; Lozano, K.; Barrera, E. V. Adv. Funct. Mater. 2004, 14, 643. crossref(new window)

7.
Qian, D.; Dickey, E. C.; Andrews, R.; Rantell, T. Appl. Phys. Lett. 2000, 76, 2868. crossref(new window)

8.
Jin, L.; Bower, C.; Zhou, O. Appl. Phys. Lett. 1998, 73, 1197. crossref(new window)

9.
Zacharia, R.; Ulbricht, H.; Hertel, T. Phys. Rev. B 2004, 69, 155406 crossref(new window)

10.
Schadler, L. S.; Giannaris, S. C.; Ajayan, P. M. Appl. Phys. Lett. 1998, 73, 3842. crossref(new window)

11.
Ajayan, P. M.; Schadler, L. S.; Giannaris, C.; Rubio, A. Adv. Mater. 2000, 12, 750. crossref(new window)

12.
Kalaitzidou, K.; Fukushima, H.; Drzal, L. T. Compos. Sci. Tech. 2007, 67, 2045. crossref(new window)

13.
Downing, T. D.; Kumar, R.; Cross, W. M.; Kjerengtroen, L.; Kellar, J. J. J.Adhesion Sci. Tech. 2000, 14, 1801. crossref(new window)

14.
Magonov, S. N.; Reneker, D. H. Ann. Rev. Mater. Sci. 1997, 27, 175. crossref(new window)

15.
Yu, M. F.; Lourie, O.; Dyer, M. J.; Moloni, K.; Kelly, T. F.; Ruoff, R. S. Science 2000, 287, 637. crossref(new window)

16.
Ciprari, D.; Jacob, K.; Tannenbaum, R. Macromolecules 2006, 39, 6565. crossref(new window)

17.
Halpin, J. C.; Tsai, S. W. "Air Force Technical Report AFML-TR 67-423", 1967.

18.
Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Science 2008, 321, 385. crossref(new window)

19.
Scarpa, F.; Adhikari, S.; Phani, A. S. Nanotechnology 2009, 20, 06709.

20.
Yasmin, A.; Daniel, I. M. Polymer 2004, 45, 8211. crossref(new window)