JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Acid Treatments of Carbon Nanotubes and Their Application as Pt-Ru/CNT Anode Catalysts for Proton Exchange Membrane Fuel Cell
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 11, Issue 4,  2010, pp.336-342
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2010.11.4.336
 Title & Authors
Acid Treatments of Carbon Nanotubes and Their Application as Pt-Ru/CNT Anode Catalysts for Proton Exchange Membrane Fuel Cell
Kim, Min-Sik; Lim, Sin-Muk; Song, Min-Young; Cho, Hyun-Jin; Choi, Yun-Ho; Yu, Jong-Sung;
  PDF(new window)
 Abstract
Different oxidation treatments on CNTs using diluted 4.0 M solution at room temperature and or at reflux conditions were investigated to elucidate the physical and chemical changes occurring on the treated CNTs, which might have significant effects on their performance as catalyst supports in PEM fuel cells. Raman spectroscopy, X-ray diffraction and transmission electron microscope analyses were made for the acid treated CNTs to determine the particle size and distribution of the CNT-supported Pt-Ru nanoparticles. These CNT-supported Pt-based nanoparticles were then employed as anode catalysts in PEMFC to investigate their catalytic activity and single-cell performance towards oxidation. Based on PEMFC performance results, refluxed Pt-Ru/CNT catalysts prepared using CNTs treated at for 0.5 h as anode have shown better catalytic activity and PEMFC polarization performance than those of the commercially available Pt-Ru/C catalyst from ETEK and other Pt-Ru/CNT catalysts developed using raw CNT, thus demonstrating the importance of acid treatment in improving and optimizing the surface properties of catalyst support.
 Keywords
CNT;Surface treatment;Electrocatalyst;Anode;Proton exchange membrane fuel cell;
 Language
English
 Cited by
1.
Improvement of Superhydrophobicity of Multi-Walled Carbon Nanotubes Produced by Fluorination,;;

Carbon letters, 2012. vol.13. 3, pp.178-181 crossref(new window)
2.
Preparation and characteristic of platinum catalyst deposited on boron-doped carbon nanotubes,;;

Current Applied Physics, 2012. vol.12. 5, pp.1248-1251 crossref(new window)
3.
Effects of Functional Grafting on Viscoelastic and Toughness Behaviors of Multi-Walled Carbon Nanotubes-Reinforced Polypropylene Nano-Composites,;;;

Macromolecular research, 2012. vol.20. 5, pp.540-543 crossref(new window)
4.
Carbon nanotubes synthesis using diffusion and premixed flame methods: a review,;;;;;

Carbon letters, 2015. vol.16. 1, pp.1-10 crossref(new window)
1.
Effect of activated graphite nanofibers on electrochemical activities of Pt–Ru nanoparticles for fuel cells, Research on Chemical Intermediates, 2011, 37, 9, 1203  crossref(new windwow)
2.
Preparation and characteristic of platinum catalyst deposited on boron-doped carbon nanotubes, Current Applied Physics, 2012, 12, 5, 1248  crossref(new windwow)
3.
Influence of KOH-activated graphite nanofibers on the electrochemical behavior of Pt–Ru nanoparticle catalysts for fuel cells, Journal of Solid State Chemistry, 2013, 199, 258  crossref(new windwow)
4.
Carbon nanotubes synthesis using diffusion and premixed flame methods: a review, Carbon letters, 2015, 16, 1, 1  crossref(new windwow)
5.
Influence of H2O2 treatment on electrochemical activity of mesoporous carbon-supported Pt–Ru catalysts, Energy, 2014, 66, 70  crossref(new windwow)
6.
Effects of functional grafting on viscoelastic and toughness behaviors of multi-walled carbon nanotubes-reinforced polypropylene nano-composites, Macromolecular Research, 2012, 20, 5, 540  crossref(new windwow)
7.
Improvement of Superhydrophobicity of Multi-Walled Carbon Nanotubes Produced by Fluorination, Carbon letters, 2012, 13, 3, 178  crossref(new windwow)
8.
Direct Carbonization of Al-Based Porous Coordination Polymer for Synthesis of Nanoporous Carbon, Journal of the American Chemical Society, 2012, 134, 6, 2864  crossref(new windwow)
 References
1.
Oliveira, N. A.; Franco, E. G.; Arico, E.; Linardi, M.; Gonzalez, E. R. J. Eur. Ceram. Soc. 2003, 23, 2987. crossref(new window)

2.
Toda, T.; Igarashi, H.; Uchida, H.; Watanabe, M. J. Electrochem. Soc. 1999, 146, 3750. crossref(new window)

3.
Springer, T. E.; Zawodzinski, T. A.; Gottesfeld, S. J. Electrochem. Soc. 1991, 138, 2334. crossref(new window)

4.
Cleghorn, S. J. C.; Ren, X.; Springer, T. E.; Wilson, M. S.; Zawodzinski, T. A.; Gottesfeld, S. Int. J. Hydrogen Energy 1997, 22, 1137. crossref(new window)

5.
Service, R. Science 2002, 296, 1222. crossref(new window)

6.
Yoon, S. B.; Fang, B.; Kim, M.; Kim, J. H.; Yu, J.-S. "Nanostructured Materials, Elsevier", G.Wilde Ed., 2009, 173.

7.
Yu, H. C.; Fung, K. Z.; Guo, T. C.; Chang, W. L. Electrochim. Acta 2004, 50, 807. crossref(new window)

8.
Salgado, J. R. C.; Antolini, E.; Gonzalez, E. R. J. Phys. Chem. B 2004, 108, 17767. crossref(new window)

9.
Chai, G. S.; Yu, J.-S. J. Mater. Chem. 2009, 19, 6842. crossref(new window)

10.
Casado-Rivera, E.; Volpe, D. J.; Alden, L.; Lind, C.; Downie, C.; Vazquez-Alvarez, T.; Angelo, A. C. D.; DiSalvo, F. J.; Abruna, H. D. J. Am. Chem. Soc. 2004, 126, 4043. crossref(new window)

11.
Markovic, A. N. M.; Schmidt, T. J.; StamenkovicA, V.; Ross, P. N. Fuel Cells 2001, 1, 105. crossref(new window)

12.
Chen, G.-Y.; Delafuente, D. A.; Sarangapani, S.; Mallouk, T. E. Catal. Today 2001, 67, 341. crossref(new window)

13.
Liao, S.-J.; Holmes, K.-A.; Tsaprailis, H.; Birss, V. I. J. Am. Chem. Soc. 2006, 128, 3504. crossref(new window)

14.
Chai, G. S.; Shin, I. S.; Yu, J. -S. Adv. Mater. 2004, 16(22), 2057. crossref(new window)

15.
Kim, J. H.; Fang, B.; Kim, M.; Yu, J. -S. Catalysis Today 2009, 146, 25. crossref(new window)

16.
Kim, M.-S.; Fang, B.; Chaudhari, N. K.; Song, M.; Bae, T.-S.; Yu, J. -S. Electrochim. Acta 2010, 55, 4543. crossref(new window)

17.
Luo, J.; Njoki, P. N.; Lin, Y.; Wang, L. -Y.; Zhong, C. -J. Electrochem. Commun. 2006, 8, 581. crossref(new window)

18.
Papageorgopoulos, D. C.; Keijzer, M.; Veldhuis, J. B. J.; de Bruijn, F. A. J. Electrochem. Soc. 2002, 149, A1400. crossref(new window)

19.
Fernandez, J. L.; Walsh, D. A.; Bard, A. J. J. Am. Chem. Soc. 2005, 127, 357. crossref(new window)

20.
Raghuveer, V.; Ferreira, P. J.; Manthiram, A. Electrochem. Commun. 2006, 8, 807. crossref(new window)

21.
Uchida, M.; Fukuoka, Y.; Sugawara, Y.; Eda, N.; Ohta, A. J. Electrochem. Soc. 1996, 143, 2245. crossref(new window)

22.
Fang, B.; Kim, J. H.; Kim, M.-S.; Yu, J.-S. Chem. Mater. 2009, 21, 789. crossref(new window)

23.
Bessel, C. A.; Laubernds, K.; Rodriguez, N. M.; Terry, R.; Baker, K. J. Phys. Chem. B 2001, 105, 1115. crossref(new window)

24.
Chai, G. S.; Yoon, S. B.; Yu, J.-S. Carbon 2005, 43, 3002. crossref(new window)

25.
Liu, Y.-C.; Qiu, X. -P.; Huang, Y.-Q.; Zhu, W. -T. J. Power Sources 2002, 111, 160. crossref(new window)

26.
Satishkumar, B. C.; Vogl, E. M.; Govindaraj, A.; Rao, C. N. R. J. Phys. D 1996, 29, 3173. crossref(new window)

27.
Satishkumar, B. C.; Govindaraj, A.; Mofokeng, J.; Subbanna, G. N.; Rao, C. N. R. J. Phys. B 1996, 29, 4925. crossref(new window)

28.
Li, W.; Liang, C.; Qiu, J.; Zhou, W.; Han, H.; Wei, Z.; Sun, G.; Xin, Q. Carbon 2002, 40, 791. crossref(new window)

29.
Che, G.; Lakshmi, B. B.; Martin, C. R.; Fisher, E. R. Langmuir 1999, 15, 750. crossref(new window)

30.
Lordi, V.; Yao, N.; Wei, J. Chem. Mater. 2001, 13, 733. crossref(new window)

31.
Ajayan, P. M.; Iijima, S. Nature 1993, 361, 333. crossref(new window)

32.
Hertel, T.; Martel, R.; Avouris, P. J. Phys. Chem. B 1998, 102, 910. crossref(new window)

33.
Wong, S. S.; Harper, J. D.; Lansbery, P. L.; Lieber, C. M. J. Am. Chem. Soc. 1998, 120, 603. crossref(new window)

34.
Dillon, A. C.; Jones, K. M.; Bekkedahl, T. A.; Kiang, C. H.; Bethune, D. S.; Heben, M. J. Nature 1997, 386, 377. crossref(new window)

35.
Rajalakshmi, N.; Dhathathreyan, K. S.; Sathish Kumar, B. C.; Govinda Raj, A. Electrochem. Acta 2000, 45, 4511. crossref(new window)

36.
Gundiah, G.; Govindaraj, A.; Rajalakshmi, N.; Dhathathreyan, K. S.; Rao, C. N. R. J. Mater. Chem. 2003, 13, 209. crossref(new window)

37.
Dai, H.; Hafner, J. H.; Rinzler, A. G.; Colbert, D. T.; Smalley, R. E. Nature 1996, 384, 147. crossref(new window)

38.
Hynek, S.; Fuller, W.; Bentley, J. Int. J. Hydrogen Energy 1997, 22, 601. crossref(new window)

39.
Che, G.; Lakshmi, B. B.; Martin, C. R.; Fisher, E. R. Langmuir 1999, 15, 750. crossref(new window)

40.
Rajesh, B.; Thampi, K. R.; Bonard, J. M.; Viswanathan, B. J. Mater. Chem. 2000, 10, 1757. crossref(new window)

41.
Lago, R. M.; Tsang, S. C.; Lu, K. L.; Chen, Y. K.; Green, M. L. H. J. Chem. Soc., Chem. Commun. 1955, 1355.

42.
Ang, L. M.; Hor, T. S. A.; Xu, G. Q.; Tung, C. H.; Zhao, S. P.; Wang, J. L. S. Carbon 2000, 45, 134.

43.
Lago, R. M.; Tsang, S. C.; Lu, K. L.; Chen, Y. K.; Green, M. L. H. J. Chem. Soc., Chem. Commun. 1995, 1355.

44.
Hwang, K. C. J. Chem. Soc., Chem. Commun. 1995, 173.

45.
Hiura, H.; Ebbesen, T. W.; Tanigaki, K. Adv. Mater. 1995, 7, 275. crossref(new window)

46.
Tian, Z. Q.; Jiang, S. P.; Liang, Y. M.; Shen, P. K. J. Phys. Chem. B 2006, 110, 5343. crossref(new window)

47.
Lordi, V.; Yao, N.; Wei, J. Chem. Mater. 2001, 13, 733. crossref(new window)

48.
Cullity, B. D. "Elements of X-ray diffraction", Addison- Wsley Pub. Inc., New York, 1984, Chap. 9.