Advanced SearchSearch Tips
Performance of Expanded Graphite as Anode Materials for High Power Li-ion Secondary Batteries
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 11, Issue 4,  2010, pp.343-346
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2010.11.4.343
 Title & Authors
Performance of Expanded Graphite as Anode Materials for High Power Li-ion Secondary Batteries
Park, Do-Youn; Lim, Yun-Soo; Kim, Myung-Soo;
  PDF(new window)
The various expanded graphites (EGs) was prepared and applied as anode material for high power Li-ion secondary battery (LIB). By changing the processing conditions of EG, a series of EG with different structure were produced, showing the changed electrochemical properties. The charge-discharge test showed that the initial reversible capacity of EG anodes prepared at the suitable conditions was over 400 mAh/g and the charge capacity at 5 C-rate was 83.2 mAh/g. These values demonstrated the much improved electrochemical properties as compared with those for the graphite anode of 360 mAh/g and 19.4 mAh/g, respectively, showing the possibility of EG anode materials for high power LIB.
Expanded graphite;Lithium ion secondary battery;Anode materials;High power;
 Cited by
과염소산을 이용한 팽창흑연의 제조 및 고출력 리튬이온전지 음극재로의 응용,박율석;정화;김명수;

한국유화학회지, 2011. vol.28. 1, pp.85-94 crossref(new window)
Preparation and capacitance behaviors of cobalt oxide/graphene composites,;;;

Carbon letters, 2012. vol.13. 2, pp.130-132 crossref(new window)
Capacitance behaviors of Polyaniline/Graphene Nanosheet Composites Prepared by Aniline Chemical Polymerization,;;;

Carbon letters, 2013. vol.14. 1, pp.51-54 crossref(new window)
Preparation and characterization of anode materials using expanded graphite/pitch composite for high-power Li-ion secondary batteries, Research on Chemical Intermediates, 2014, 40, 7, 2501  crossref(new windwow)
Rate-capability response of graphite anode materials in advanced energy storage systems: a structural comparison, Carbon letters, 2016, 17, 1, 39  crossref(new windwow)
Recycling of graphite anodes for the next generation of lithium ion batteries, Journal of Applied Electrochemistry, 2016, 46, 2, 123  crossref(new windwow)
Mechanochemical green synthesis of exfoliated graphite at room temperature and investigation of its nonlinear properties based zinc oxide composite varistors, Journal of Materials Science: Materials in Electronics, 2017, 28, 6, 4839  crossref(new windwow)
Burke, A.; Kutz, M. J. Power Source 2011, 196, 524.

Oh, W. C.; Kim, B. S. Bull. Korean Chem. Soc. 2000, 12, 101.

Masataka, W. Mater. Sci. Eng. 2001, 3, 109.

Datta, M. K.; Kumta, P. N. J. Power Source 2006, 158, 557. crossref(new window)

Kim, T. R.; Wu, J.-Y.; Hu, Q. L.; Kim, M. S. Carbon Letter 2007, 8, 335. crossref(new window)

Takei, K.; Ishihara, K.; Kumai, K.; Iwahori, T.; Miyake, K.; Nakatsu, T.; Terada, N.; Arai, N. J. Power Source 2003, 119, 887 . crossref(new window)

Adachi, K.; Tajima, H.; Hashimoto, T.; Kobayashi, K. J. Power Source 2003, 119, 897. crossref(new window)

Park, D. Y.; Park, D. Y.; Lan, Y.; Lim, Y. S.; Kim, M. S. J. Ind. Eng. Chem. 2009, 15, 588. crossref(new window)

Ko, Y. S. J. Korean Ceramic Society 1988, 25, 408.

Du, X. S.; Xiao, M.; Meng, Y. Z. J. Polymer Science 2004, 42, 1972. crossref(new window)