JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Equilibrium Removal of Pb (II) Ions from Aqueous Solution onto Oxidized-KOH-Activated Carbons
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 12, Issue 1,  2011, pp.1-7
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2011.12.1.001
 Title & Authors
Equilibrium Removal of Pb (II) Ions from Aqueous Solution onto Oxidized-KOH-Activated Carbons
Fathy, Nady A.; El-Sherif, Iman Y.;
  PDF(new window)
 Abstract
In the present study, the removal of Pb (II) ions on oxidized activated carbons (ACs) was investigated. ACs were derived from activation of indigenous cotton stalks waste with potassium hydroxide (KOH) in two-stage process. The KOH-ACs were subjected to liquid-phase oxidation with hot and one untreated sample was included for comparison. The obtained carbons were characterized by Fourier transform infrared (FTIR), slurry pH and -adsorption at 77 K, respectively. Adsorption capacity of Pb (II) ions on the resultant carbons was determined by batch equilibrium experiments. The experimental results indicated that the oxidation with nitric acid was associated with a significant increase in mass of yield as well as a remarkable reduction in internal porosity as compared to the untreated carbon. The AC-800N revealed higher adsorption capacity than that of AC-800, although the former sample exhibited low surface area and micropore volume. It was observed that the adsorption capacity enhancement attributed to pore widening, the generation of oxygen functional groups and potassium containing compounds leading to cation-exchange on the carbon surface. These results show that the oxidized carbons represented prospective adsorbents for enhancing the removal of heavy metals from wastewater.
 Keywords
Cotton stalks;KOH activation; oxidation;Adsorption of Pb (II) ions;
 Language
English
 Cited by
1.
Elemental Mercury Adsorption Behaviors of Chemically Modified Activated Carbons,;;;;

Bulletin of the Korean Chemical Society, 2011. vol.32. 4, pp.1321-1326 crossref(new window)
2.
페놀계 활성탄소의 전기화학 특성에 미치는 붕산 처리의 영향,정민정;유혜련;이다영;이영석;

공업화학, 2013. vol.24. 2, pp.201-207
1.
Lead preconcentration by solid phase extraction using oxidized carbon xerogel and spectrophotometric determination with dithizone, Microchemical Journal, 2016, 128, 166  crossref(new windwow)
2.
Effects of surface chemical properties of activated carbon modified by amino-fluorination for electric double-layer capacitor, Journal of Colloid and Interface Science, 2012, 381, 1, 152  crossref(new windwow)
3.
Influence of nickel oxide on carbon dioxide adsorption behaviors of activated carbons, Fuel, 2012, 102, 439  crossref(new windwow)
4.
Influence of the raw material and nickel oxide on the CH4 capture capacity behaviors of microporous carbon, International Journal of Hydrogen Energy, 2015, 40, 39, 13690  crossref(new windwow)
5.
Hydrogen adsorption on activated carbon nanotubes with an atomic-sized vanadium catalyst investigated by electrical resistance measurements, Applied Surface Science, 2012, 258, 7, 2749  crossref(new windwow)
6.
Pore structure and adsorption properties of carbon xerogels derived from carbonization of tannic acid-resorcinol-formaldehyde resin, Journal of Analytical and Applied Pyrolysis, 2016, 119, 60  crossref(new windwow)
7.
Impact of chemical activation on the adsorption performance of common reed towards Cu(II) and Cd(II), International Journal of Mineral Processing, 2016, 157, 80  crossref(new windwow)
 References
1.
Reddad Z, Gerente C, Andres Y, Le Cloirec P. Environ Sci Technol, 36, 2067 (2002). crossref(new window)

2.
El-Sherif IY, Shouman MA, Girgis BS. J Environmental Sci, 33, 199 (2007).

3.
Ma QY, Logan TJ, Traina SJ. Environ Sci Technol, 29, 1118 (1995). crossref(new window)

4.
Bhattacharjee S, Chakrabarty S, Maity S, Kar S, Thakur P, Bhattacharyya G. Water Res, 37, 3954 (2003). crossref(new window)

5.
Balaria A, Schiewer S. Sep Purif Technol, 63, 577 (2008). crossref(new window)

6.
Li K, Zheng Z, Li Y. J Hazard Mater, 181, 440 (2010). crossref(new window)

7.
El-Shafey EI, Cox M, Pichugin AA, Appleton Q. J Chem Technol Biotechnol, 77, 429 (2002). crossref(new window)

8.
Faust SD, Aly OM. Chemistry of Water Treatment, Butterworth, Boston (1983).

9.
Girgis BS, Elkady AA, Attia AA, Fathy NA, Wahhab A. Carbon Lett, 10, 114 (2009). crossref(new window)

10.
Park SJ, Jang YS. J Colloid Interface Sci, 249, 458 (2002). crossref(new window)

11.
Monser L, Adhoum N. Sep Purif Technol, 26, 137 (2002). crossref(new window)

12.
Shen W, Li Z, Liu Y. Recent Patents Chem Eng, 1, 27 (2008). crossref(new window)

13.
Xu T, Liu X. Chin J Chem Eng, 16, 401 (2008). crossref(new window)

14.
Gil A, Puente Gdl, Grange P. Microporous Mater, 12, 51 (1997). crossref(new window)

15.
Rodriguez-Reinoso F. Carbon, 36, 159 (1998). crossref(new window)

16.
Moreno-Castilla C, Carrasco-Marin F, Maldonado-Hodar FJ, Rivera-Utrilla J. Carbon, 36, 145 (1998). crossref(new window)

17.
Bansal RC, Goyal M. Activated Carbon Adsorption, Taylor & Francis, Boca Raton (2005).

18.
Adib F, Bagreev A, Bandosz TJ. Environ Sci Technol, 34, 686 (2000). crossref(new window)

19.
Gomez-Serrano V, Acedo-Ramos M, Lopez-Peinado AJ, Valenzuela-Calahorro C. Thermochim Acta, 291, 109 (1997). crossref(new window)

20.
Yang RT. Adsorbents: Fundamentals and Applications, Wiley-Interscience, Hoboken, NJ (2003).

21.
Lozano-Castello D, Lillo-Rodenas MA, Cazorla-Amoros D, Linares-Solano A. Carbon, 39, 741 (2001). crossref(new window)

22.
Oh GH, Park CR. Fuel, 81, 327 (2002). crossref(new window)

23.
Oh GH, Yun CH, Park CR. Carbon Sci, 4, 180 (2003).

24.
Chunlan L, Shaoping X, Yixiong G, Shuqin L, Changhou L. Carbon, 43, 2295 (2005). crossref(new window)

25.
Yun CH, Park YH, Park CR. Carbon, 39, 559 (2001). crossref(new window)

26.
El-Hendawy ANA, Alexander AJ, Andrews RJ, Forrest G. J Anal Appl Pyrolysis, 82, 272 (2008). crossref(new window)

27.
Girgis BS, Smith E, Louis MM, El-Hendawy ANA. J Anal Appl Pyrolysis, 86, 180 (2009). crossref(new window)

28.
Fathy NA, Girgis BS, Khalil LB, Farah JY. Carbon Lett, 11, 224 (2010). crossref(new window)

29.
Gomez-Serrano V, Cuerda-Correa EM, Fernandez-Gonzalez MC, Alexandre-Franco MF, Macias-Garcia A. Mater Lett, 59, 846 (2005). crossref(new window)

30.
Cordero T, Rodriguez-Mirasol J, Tancredi N, Piriz J, Vivo G, Rodriguez JJ. Ind Eng Chem Res, 41, 6042 (2002). crossref(new window)

31.
El-Hendawy ANA. Carbon, 41, 713 (2003). crossref(new window)

32.
Malik DJ, Strelko Jr V, Streat M, Puziy AM. Water Res, 36, 1527 (2002). crossref(new window)

33.
Choma J, Jaroniec M. Adsorpt Sci Technol, 16, 295 (1998).

34.
Imamoglu M, Tekir O. Desalination, 228, 108 (2008). crossref(new window)

35.
Giles CH, MacEwan TH, Nakhwa SN, Smith D. J Chem Soc, 3973 (1960). crossref(new window)

36.
Tangjuank S, Insuk N, Tontrakoon J, Udeye V. World Acad Sci Eng Technol, 52, 110 (2009).

37.
Kobya M, Demirbas E, Senturk E, Ince M. Bioresour Technol, 96, 1518 (2005). crossref(new window)

38.
Ferro-Garcia MA, Rivera-Utrilla J, Bautista-Toledo I, Mingorance MD. Carbon, 28, 545 (1990). crossref(new window)

39.
Fathy NA. Physico-Chemical and Adsorption Studies on Activated Carbon Prepared from Peach Stones [MS Thesis], Cairo University, Cairo, Egypt (2006).