JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Preparation and Characteristics of Conducting Polymer-Coated MWCNTs as Electromagnetic Interference Shielding Materials
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 12, Issue 1,  2011, pp.48-52
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2011.12.1.048
 Title & Authors
Preparation and Characteristics of Conducting Polymer-Coated MWCNTs as Electromagnetic Interference Shielding Materials
Kim, Yeon-Yi; Yun, Ju-Mi; Lee, Young-Seak; Kim, Hyung-Il;
  PDF(new window)
 Abstract
The conducting polymer-coated multi-walled carbon nanotubes (MWCNTs) were prepared by template polymerization of aniline and pyrrole on the surface of MWCNTs in order to develop the novel electromagnetic interference (EMI) shielding materials. The conducting polymer phases formed on the surface of MWCNTs were confirmed by field emission-scanning electron microscopy and field emission-transmission electron microscopy. Both permittivity and permeability were significantly improved for the conducting polymer-coated MWCNTs due to the intrinsic electrical properties of MWCNTs and the conducting properties of coated polymers. The electromagnetic waves were effectively absorbed based on the permittivity nature of conducting polymer and MWCNTs preventing the secondary interference from reflecting the electromagnetic waves. The highly improved EMI shielding efficiency was also obtained for the conducting polymer-coated MWCNTs showing the synergistic effects by combining MWCNTs and the conducting polymers.
 Keywords
Multi-walled carbon nanotube;Conducting polymer;Template polymerization;Electromagnetic interference shielding;
 Language
English
 Cited by
1.
무전해 니켈도금된 탄소섬유강화 에폭시기지 복합재료의 전자파 차폐특성,홍명선;배경민;이해성;박수진;안계혁;강신재;김병주;

공업화학, 2011. vol.22. 6, pp.672-678
2.
다중벽 탄소나노튜브강화 폴리프로필렌 나노복합재료의 전자파 차폐효과 및 기계적 특성,임윤지;서민강;김학용;박수진;

폴리머, 2012. vol.36. 4, pp.494-499 crossref(new window)
3.
Effects of Surface Nitrification on Thermal Conductivity of Modified Aluminum Oxide Nanofibers-Reinforced Epoxy Matrix Nanocomposites,;;;;

Bulletin of the Korean Chemical Society, 2012. vol.33. 10, pp.3258-3264 crossref(new window)
4.
Fabrication and Capacitance of Co3O4-Graphene Nanocomposites Electrode Prepared by Pulse Microwave-assisted Reduction Methods,;;;

Bulletin of the Korean Chemical Society, 2012. vol.33. 12, pp.4247-4250 crossref(new window)
5.
CNT-Pt counter electrode prepared using a polyol process to achieve high performance in dye-sensitised solar cells,;;;;

Journal of Industrial and Engineering Chemistry, 2012. vol.18. 3, pp.1023-1028 crossref(new window)
6.
Effects of oxyfluorination on a multi-walled carbon nanotube electrode for a high-performance glucose sensor,;;;;;

Journal of Industrial and Engineering Chemistry, 2012. vol.18. 2, pp.674-679 crossref(new window)
7.
Effects of Functional Grafting on Viscoelastic and Toughness Behaviors of Multi-Walled Carbon Nanotubes-Reinforced Polypropylene Nano-Composites,;;;

Macromolecular research, 2012. vol.20. 5, pp.540-543 crossref(new window)
8.
Synergetic improvement in electromagnetic interference shielding characteristics of polyaniline-coated graphite oxide/${\gamma}-Fe_2O_3/BaTiO_3$ nanocomposites,;;;

Journal of Industrial and Engineering Chemistry, 2013. vol.19. 2, pp.493-497 crossref(new window)
 References
1.
Wong PTC, Chambers B, Anderson AP, Wright PV. Electron Lett, 28, 1651 (1992). crossref(new window)

2.
Yu X, Shen Z. J Magn Magn Mater, 321, 2890 (2009). crossref(new window)

3.
Saini P, Choudhary V, Dhawan SK. Polym Adv Technol, 20, 355 (2009). crossref(new window)

4.
Sudha JD, Sivakala S, Prasanth R, Reena VL, Radhakrishnan Nair P. Compos Sci Technol, 69, 358 (2009). crossref(new window)

5.
Saini P, Choudhary V, Singh BP, Mathur RB, Dhawan SK. Mater Chem Phys, 113, 919 (2009). crossref(new window)

6.
Yamada T, Morizane T, Arimitsu T, Miyake A, Makino H, Yamamoto N, Yamamoto T. Thin Solid Films, 517, 1027 (2008). crossref(new window)

7.
Thomassin JM, Pagnoulle C, Bednarz L, Huynen I, Jerome R, Detrembleur C. J Mater Chem, 18, 792 (2008). crossref(new window)

8.
Stonier RA. SAMPE J, 27, 9 (1991).

9.
Wu HL, Ma CCM, Yang YT, Kuan HC, Yang CC, Chiang CL. J Polym Sci, Part B: Polym Phys, 44, 1096 (2006). crossref(new window)

10.
Xie XL, Mai YW, Zhou XP. Mater Sci Eng, Part R: Rep, 49, 89 (2005). crossref(new window)

11.
Kymakis E, Amaratunga GAJ. Appl Phys Lett, 80, 112 (2002). crossref(new window)

12.
Ago H, Petritsch K, Shaffer MSP, Windle AH, Friend RH. Adv Mater, 11, 1281 (1999). crossref(new window)

13.
Pomposo JA, Rodriguez J, Grande H. Synth Met, 104, 107 (1999). crossref(new window)

14.
Stafstrom S, Bredas JL, Epstein AJ, Woo HS, Tanner DB, Huang WS, MacDiarmid AG. Phys Rev Lett, 59, 1464 (1987). crossref(new window)

15.
Zuo F, Angelopoulos M, MacDiarmid AG, Epstein AJ. Phys Rev B, 39, 3570 (1989). crossref(new window)

16.
Md Showkat A, Lee KP, Iyengar Gopalan A, Kim SH, Choi SH, Sohn SH. J Appl Polym Sci, 101, 3721 (2006). crossref(new window)

17.
Mattoso LHC, Faria RM, Bulhoes LOS, MacDiarmid AG. J Polym Sci, Part A: Polym Chem, 32, 2147 (1994). crossref(new window)

18.
Savitha P, Rao PS, Sathyanarayana DN. Polym Int, 54, 1243 (2005). crossref(new window)

19.
Cao Y, Smith P, Heeger AJ. Synth Met, 48, 91 (1992). crossref(new window)

20.
Luo K, Guo X, Shi N, Sun C. Synth Met, 151, 293 (2005). crossref(new window)

21.
Saini P, Choudhary V, Dhawan SK. Indian J Eng Mater Sci, 14, 436 (2007).

22.
Yang C, Liu P. Synth Met, 160, 768 (2010). crossref(new window)

23.
Chen X, Cai Q, Wang W, Mo G, Jiang L, Zhang K, Chen Z, Wu Z. Chem Mater, 20, 2757 (2008). crossref(new window)

24.
Das NC, Maiti S. J Mater Sci, 43, 1920 (2008). crossref(new window)

25.
Kim HM, Kim K, Lee CY, Joo J, Cho SJ, Yoon HS, Pejakovic DA, Yoo JW, Epstein AJ. Appl Phys Lett, 84, 589 (2004). crossref(new window)

26.
Lu G, Li X, Jiang H. Compos Sci Technol, 56, 193 (1996). crossref(new window)