Advanced SearchSearch Tips
Effects of positive and negative stretching on the structure and properties of polyacrylonitrile fibers in the pre-oxidation process
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 12, Issue 2,  2011, pp.107-111
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2011.12.2.107
 Title & Authors
Effects of positive and negative stretching on the structure and properties of polyacrylonitrile fibers in the pre-oxidation process
Wang, Liang; Lu, Wei; Zhang, Li; Xue, Liwei; Ryu, Seung-Kon; Jin, Ri-guang;
  PDF(new window)
Polyacrylonitrile (PAN) fibers were pre-oxidized in a temperature range of 180-275. The effects of positive and negative stretching on the structure and morphology of PAN fiber in the pre-oxidation process were studied by FTIR spectroscopy, XRD, and SEM. Mechanical property changes were also investigated. No changes in the movement and intensity of functional groups of PAN fibers were caused by positive stretching of up to 10% and negative stretching down to -8%. The crystal structure can be affected by the positive stretching and negative stretching. The maximum strength is 479.81 MPa when the stretching is positive, and the maximum strength is 420.55 MPa when the stretching is negative.
polyacrylonitrile;positive stretching;negative stretching;pre-oxidation;
 Cited by
Indicators for evaluation of progress in thermal stabilization reactions of polyacrylonitrile fibers, Journal of Applied Polymer Science, 2014, 131, 11, n/a  crossref(new windwow)
Influence of processing parameters on the properties of carbon fibres - an overview, Materialwissenschaft und Werkstofftechnik, 2016, 47, 11, 1044  crossref(new windwow)
Cato AD, Edie DD. Flow behavior of mesophase pitch. Carbon, 41, 1411 (2003). doi: 10.1016/s0008-6223(03)00050-2. crossref(new window)

Rahaman MSA, Ismail AF, Mustafa A. A review of heat treatment on polyacrylonitrile fiber. Polym Degradation Stab, 92, 1421 (2007). doi: 10.1016/j.polymdegradstab.2007.03.023. crossref(new window)

Wang PH. Aspects on prestretching of PAN precursor: Shrinkage and thermal behavior. J Appl Polym Sci, 67, 1185 (1998). doi: 10.1002/(sici)1097-4628(19980214)67:7<1185::aid-app3>;2-c. crossref(new window)

Yu M, Wang C, Bai Y, Wang Y, Zhu B. Evolution of tension during the thermal stabilization of polyacrylonitrile fibers under different parameters. J Appl Polym Sci, 102, 5500 (2006). doi: 10.1002/app.23960. crossref(new window)

Wu G, Lu C, Ling L, Hao A, He F. Influence of tension on the oxidative stabilization process of polyacrylonitrile fibers. J Appl Polym Sci, 96, 1029 (2005). doi: 10.1002/app.21388. crossref(new window)

Dalton S, Heatley F, Budd PM. Thermal stabilization of polyacrylonitrile fibres. Polymer, 40, 5531 (1999). doi: 10.1016/s0032-3861(98)00778-2. crossref(new window)

Wangxi Z, Jie L, Gang W. Evolution of structure and properties of PAN precursors during their conversion to carbon fibers. Carbon, 41, 2805 (2003). doi: 10.1016/s0008-6223(03)00391-9. crossref(new window)

Yu M, Wang C, Bai Y, Zhu B, Ji M, Xu Y. Microstructural evolution in polyacrylonitrile fibers during oxidative stabilization. J Polym Sci, Part B: Polym Phys, 46, 759 (2008). doi: 10.1002/polb.21410. crossref(new window)

Hou Y, Sun T, Wang H, Wu D. Thermal-shrinkage investigation of the chemical reaction during the stabilization of polyacrylonitrile fibers. J Appl Polym Sci, 114, 3668 (2009). doi: 10.1002/app.30303. crossref(new window)

Bhat GS, Cook FL, Abhiraman AS, Peebles Jr LH. New aspects in the stabilization of acrylic fibers for carbon fibers. Carbon, 28, 377 (1990). doi: 10.1016/0008-6223(90)90011-m. crossref(new window)

Ozbek S, Isaac DH. Strain-induced density changes in PAN-based carbon fibres. Carbon, 38, 2007 (2000). doi: 10.1016/s0008-6223(00)00060-9. crossref(new window)