JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Influence of phosphoric acid treatment on hydrogen adsorption behaviors of activated carbons
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 12, Issue 2,  2011, pp.112-115
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2011.12.2.112
 Title & Authors
Influence of phosphoric acid treatment on hydrogen adsorption behaviors of activated carbons
Yoo, Hye-Min; Lee, Seul-Yi; Kim, Byung-Joo; Park, Soo-Jin;
  PDF(new window)
 Abstract
The scope of this work investigates the relationship between the amount of oxygen-functional groups and hydrogen adsorption capacity with different concentrations of phosphoric acid. The amount of oxygen-functional groups of activated carbons (ACs) is characterized by X-ray photoelectron spectroscopy. The effects of chemical treatments on the pore structures of ACs are investigated by /77 K adsorption isotherms. The hydrogen adsorption capacity is measured by isothermal adsorption at 298 K and 100 bar. In the results, the specific surface area and pore volume slightly decreased with the chemical treatments due to the pore collapsing behaviors, but the hydrogen storage capacity was increased by the oxygen-functional group characteristics of AC surfaces, resulting from enhanced electron acceptor-donor interaction at interfaces.
 Keywords
hydrogen storage;activated carbon;chemical treatments;
 Language
English
 Cited by
1.
KOH 활성화 효과에 의한 흑연나노섬유의 전기화학적 거동,유혜민;민병각;이규환;변준형;박수진;

폴리머, 2012. vol.36. 3, pp.321-325 crossref(new window)
2.
Comprehensive review on synthesis and adsorption behaviors of graphene-based materials,;;

Carbon letters, 2012. vol.13. 2, pp.73-87 crossref(new window)
3.
Investigation of the Hydrogen Storage Mechanism of Expanded Graphite by Measuring Electrical Resistance Changes,;;;

Bulletin of the Korean Chemical Society, 2012. vol.33. 9, pp.3033-3038 crossref(new window)
4.
A review on solid adsorbents for carbon dioxide capture,;;

Journal of Industrial and Engineering Chemistry, 2015. vol.23. pp.1-11 crossref(new window)
5.
Effect of chemical treatments on lithium recovery process of activated carbons,;;;

Journal of Industrial and Engineering Chemistry, 2015. vol.27. pp.329-333 crossref(new window)
1.
Effect of p-type multi-walled carbon nanotubes for improving hydrogen storage behaviors, Journal of Solid State Chemistry, 2014, 210, 1, 256  crossref(new windwow)
2.
Investigation of the Hydrogen Storage Mechanism of Expanded Graphite by Measuring Electrical Resistance Changes, Bulletin of the Korean Chemical Society, 2012, 33, 9, 3033  crossref(new windwow)
3.
A review: methane capture by nanoporous carbon materials for automobiles, Carbon letters, 2016, 17, 1, 18  crossref(new windwow)
4.
Comprehensive review on synthesis and adsorption behaviors of graphene-based materials, Carbon letters, 2012, 13, 2, 73  crossref(new windwow)
5.
Effect of chemical treatments on lithium recovery process of activated carbons, Journal of Industrial and Engineering Chemistry, 2015, 27, 329  crossref(new windwow)
6.
Determination of the optimal pore size for improved CO2 adsorption in activated carbon fibers, Journal of Colloid and Interface Science, 2013, 389, 1, 230  crossref(new windwow)
7.
Preparation and characterization of ordered porous carbons for increasing hydrogen storage behaviors, Journal of Solid State Chemistry, 2011, 184, 10, 2655  crossref(new windwow)
8.
Influence of the raw material and nickel oxide on the CH4 capture capacity behaviors of microporous carbon, International Journal of Hydrogen Energy, 2015, 40, 39, 13690  crossref(new windwow)
9.
Influence of the pore size in multi-walled carbon nanotubes on the hydrogen storage behaviors, Journal of Solid State Chemistry, 2012, 194, 307  crossref(new windwow)
10.
Influence of nickel oxide on carbon dioxide adsorption behaviors of activated carbons, Fuel, 2012, 102, 439  crossref(new windwow)
11.
Effect of KOH Activation on Electrochemical Behaviors of Graphite Nanofibers, Polymer Korea, 2012, 36, 3, 321  crossref(new windwow)
12.
A review on solid adsorbents for carbon dioxide capture, Journal of Industrial and Engineering Chemistry, 2015, 23, 1  crossref(new windwow)
13.
Synthesis of MOF having hydroxyl functional side groups and optimization of activation process for the maximization of its BET surface area, Journal of Solid State Chemistry, 2013, 197, 261  crossref(new windwow)
 References
1.
Schlapbach L, Zuttel A. Hydrogen-storage materials for mobile applications. Nature, 414, 353 (2001). doi: 10.1038/35104634. crossref(new window)

2.
Elam CC, Padro CEG, Sandrock G, Luzzi A, Lindblad P, Hagen EF. Realizing the hydrogen future: the International Energy Agency's efforts to advance hydrogen energy technologies. Int J Hydrogen Energy, 28, 601 (2003). doi: 10.1016/s0360-3199(02)00147-7. crossref(new window)

3.
Dillon AC, Heben MJ. Hydrogen storage using carbon adsorbents: past, present and future. Appl Phys A: Mater Sci Process, 72, 133 (2001). doi: 10.1007/s003390100788. crossref(new window)

4.
Xu WC, Takahashi K, Matsuo Y, Hattori Y, Kumagai M, Ishiyama S, Kaneko K, Iijima S. Investigation of hydrogen storage capacity of various carbon materials. Int J Hydrogen Energy, 32, 2504 (2007). doi: 10.1016/j.ijhydene.2006.11.012. crossref(new window)

5.
Zacharia R, Kim KY, Hwang SW, Nahm KS. Intrinsic linear scaling of hydrogen storage capacity of carbon nanotubes with the specific surface area. Catal Today, 120, 426 (2007). doi: 10.1016/j.cattod.2006.09.026 crossref(new window)

6.
Park SJ, Lee SY. Hydrogen storage behaviors of platinum-supported multi-walled carbon nanotubes. Int J Hydrogen Energy, 35, 13048 (2010). doi: 10.1016/j.ijhydene.2010.04.083. crossref(new window)

7.
Park SJ, Kim BJ, Lee YS. Patent trends of carbonaceous materials for hydrogwn storage (III): major applicants & technology flowchart. Carbon Lett, 9, 35 (2008). crossref(new window)

8.
Park SJ, Kim BJ, Lee YS, Cho MJ. Influence of copper electroplating on high pressure hydrogen-storage behaviors of activated carbon fibers. Int J Hydrogen Energy, 33, 1706 (2008). doi: 10.1016/j.ijhydene.2008.01.011. crossref(new window)

9.
Ma LP, Wu ZS, Li J, Wu ED, Ren WC, Cheng HM. Hydrogen adsorption behavior of graphene above critical temperature. Int J Hydrogen Energy, 34, 2329 (2009). doi: 10.1016/j.ijhydene.2008.12.079. crossref(new window)

10.
Lopez-Corral I, German E, Volpe MA, Brizuela GP, Juan A. Tightbinding study of hydrogen adsorption on palladium decorated graphene and carbon nanotubes. Int J Hydrogen Energy, 35, 2377 (2010). doi: 10.1016/j.ijhydene.2009.12.155. crossref(new window)

11.
Chen GX, Hong MH, Ong TS, Lam HM, Chen WZ, Elim HI, Ji W, Chong TC. Carbon nanoparticles based nonlinear optical liquid. Carbon, 42, 2735 (2004). doi: 10.1016/j.carbon.2004.05.035. crossref(new window)

12.
Huang CC, Chen HM, Chen CH. Hydrogen adsorption on modified activated carbon. Int J Hydrogen Energy, 35, 2777 (2010). doi: 10.1016/j.ijhydene.2009.05.016. crossref(new window)

13.
Panella B, Hirscher M, Roth S. Hydrogen adsorption in different carbon nanostructures. Carbon, 43, 2209 (2005). doi: 10.1016/j.carbon.2005.03.037. crossref(new window)

14.
Li J, Cheng S, Zhao Q, Long P, Dong J. Synthesis and hydrogenstorage behavior of metal-organic framework MOF-5. Int J Hydrogen Energy, 34, 1377 (2009). doi: 10.1016/j.ijhydene.2008.11.048. crossref(new window)

15.
Park SJ, Jang YS. Pore structure and surface properties of chemically modified activated carbons for adsorption mechanism and rate of Cr(VI). J Colloid Interface Sci, 249, 458 (2002). doi:10.1006/jcis.2002.8269. crossref(new window)

16.
Park SJ, Jin SY. Effect of ozone treatment on ammonia removal of activated carbons. J Colloid Interface Sci, 286, 417 (2005). doi:10.1016/j.jcis.2005.01.043. crossref(new window)

17.
Moreno-Castilla C, Lopez-Ramon MV, Carrasco-Marin F. Changples in surface chemistry of activated carbons by wet oxidation. Carbon, 38, 1995 (2000). doi: 10.1016/s0008-6223(00)00048-8. crossref(new window)

18.
Park SJ, Lee SY. Hydrogen storage behaviors of carbon nanotubes/ metal-organic frameworks-5 hybrid composites. Carbon Lett, 10, 19 (2009). crossref(new window)

19.
Rather SU, Zacharia R, Naik M-u-d, Hwang SW, Kim AR, Nahm KS. Surface adsorption and micropore filling of the hydrogen in activated MWCNTs. Int J Hydrogen Energy, 33, 6710 (2008). doi:10.1016/j.ijhydene.2008.08.040. crossref(new window)

20.
Lee SY, Park SJ. Effect of temperature on activated carbon nanotubes for hydrogen storage behaviors. Int J Hydrogen Energy, 35, 6757 (2010). doi: 10.1016/j.ijhydene.2010.03.114. crossref(new window)

21.
Lee SY, Park SJ. Effect of chemical treatments on hydrogen storage behaviors of multi-walled carbon nanotubes. Mater Chem Phys, 124, 1011 (2010). doi: 10.1016/j.matchemphys.2010.08.022. crossref(new window)