Advanced SearchSearch Tips
A review of the preparation and properties of carbon nanotubes-reinforced polymer compositess
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 12, Issue 2,  2011, pp.57-69
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2011.12.2.057
 Title & Authors
A review of the preparation and properties of carbon nanotubes-reinforced polymer compositess
Jin, Fan-Long; Park, Soo-Jin;
  PDF(new window)
Carbon nanotubes (CNTs) have high Young`s modulus, low density, and excellent electrical and thermal properties, which make them ideal fillers for polymer composites. Homogeneous dispersion of CNTs in a polymer matrix plays a crucial role in the preparation of polymer composites based on interfacial interactions between CNTs and the polymer matrix. The addition of a small amount of CNTs strongly improves the electrical, thermal, and mechanical properties of the composites. This paper aims to review the processing technology and improvement of properties of CNT-reinforced polymer composites.
carbon nanotubes;electrical properties;thermal properties;mechanical properties;polymer composites;
 Cited by
Effect of Fe3O4 loading on the conductivities of carbon nanotube/chitosan composite films,;;;;

Carbon letters, 2012. vol.13. 2, pp.126-129 crossref(new window)
CNT-Pt counter electrode prepared using a polyol process to achieve high performance in dye-sensitised solar cells,;;;;

Journal of Industrial and Engineering Chemistry, 2012. vol.18. 3, pp.1023-1028 crossref(new window)
Recent Advances in Carbon-Nanotube-Based Epoxy Composites,;;

Carbon letters, 2013. vol.14. 1, pp.1-13 crossref(new window)
나노탄소 고분자 복합재료,최철림;

Composites Research, 2013. vol.26. 3, pp.147-154 crossref(new window)
Electromagnetic interference shielding effectiveness of high-density polyethylene composites reinforced with multi-walled carbon nanotubes,;;

Journal of Industrial and Engineering Chemistry, 2015. vol.21. pp.155-157 crossref(new window)
Characterization and influence of shear flow on the surface resistivity and mixing condition on the dispersion quality of multi-walled carbon nanotube/polycarbonate nanocomposites,;;

Carbon letters, 2015. vol.16. 2, pp.86-92 crossref(new window)
Photo-Crosslinkable Chitosan Hydrogel as a Bioadhesive for Esophageal Stents,;;;;;;;;;;;

Macromolecular research, 2015. vol.23. 9, pp.882-884 crossref(new window)
Nanocarbon Polymer Composites, Composites Research, 2013, 26, 3, 147  crossref(new windwow)
Nylon 6/multiwalled carbon nanotube composites: Effect of the melt-compounding conditions and nanotube content on the morphology, mechanical properties, and rheology, Journal of Applied Polymer Science, 2014, 131, 20, n/a  crossref(new windwow)
An experimental investigation on the conductive behavior of carbon nanotube-reinforced natural polymer nanocomposites, Research on Chemical Intermediates, 2014, 40, 7, 2487  crossref(new windwow)
Thermal and mechanical behavior of poly(vinyl butyral)-modified novolac epoxy/multiwalled carbon nanotube nanocomposites, Journal of Applied Polymer Science, 2015, 133, 17, n/a  crossref(new windwow)
Characterization and influence of shear flow on the surface resistivity and mixing condition on the dispersion quality of multi-walled carbon nanotube/polycarbonate nanocomposites, Carbon letters, 2015, 16, 2, 86  crossref(new windwow)
Bioactivity of MWCNT in Conidia of Entomopathogenic Fungus Isaria fumosorosea, Water, Air, & Soil Pollution, 2015, 226, 3  crossref(new windwow)
The influence of acid-treated multi-walled carbon nanotubes on the surface morphology and thermal properties of alanine-based poly(amide–imide)/MWCNT nanocomposites system, Colloid and Polymer Science, 2015, 293, 1, 333  crossref(new windwow)
Sonochemical production and characterization of d-fructose functionalized MWCNTs/alanine-based poly(amide-imide) nanocomposites, Colloid and Polymer Science, 2015, 293, 6, 1817  crossref(new windwow)
Tunable dielectric properties in polyacrylonitrile/multiwall carbon nanotube composites, Polymer Composites, 2015, 38, 8, 1741  crossref(new windwow)
Gas sensors based on functionalized carbon nanotubes, Journal of Contemporary Physics (Armenian Academy of Sciences), 2015, 50, 4, 333  crossref(new windwow)
Chemical adsorption of D-sucrose on MWCNTs for compatibility improvement with alanine-based poly(amide-imide) matrix: morphology examination and thermal stability study, Colloid and Polymer Science, 2016, 294, 1, 239  crossref(new windwow)
Application of recycled PET/carboxylated multi-walled carbon nanotube composites for Cd2+ adsorption from aqueous solution: a study of morphology, thermal stability, and electrical conductivity, Colloid and Polymer Science, 2017, 295, 3, 453  crossref(new windwow)
Degradation of physicomechanical properties of epoxy nanocomposites with carbon nanotubes upon heat and humidity aging, Russian Journal of Applied Chemistry, 2017, 90, 5, 788  crossref(new windwow)
Fabrication, Physicochemical Characterizations and Electrical Conductivity Studies of Modified Carbon Nanofiber-Reinforced Epoxy Composites: Effect of 1-Butyl-3-Methylimidazolium Tetrafluoroborate Ionic Liquid, Polymer-Plastics Technology and Engineering, 2018, 57, 3, 218  crossref(new windwow)
Iijima S. Helical microtubules of graphitic carbon. Nature, 354, 56 (1991). doi: 10.1038/354056a0. crossref(new window)

Ajayan PM, Stephan O, Colliex C, Trauth D. Aligned carbon nanotube arrays formed by cutting a polymer resin--nanotube composite. Science, 265, 1212 (1994). doi: 10.1126/science.265.5176.1212. crossref(new window)

Hong J, Park DW, Shim SE. A review on thermal conductivity of polymer composites using carbon-based fillers: carbon nanotubes and carbon fibers. Carbon Lett, 11, 347 (2010). crossref(new window)

Zhang J, Zou H, Qing Q, Yang Y, Li Q, Liu Z, Guo X, Du Z. Effect of chemical oxidation on the structure of single-walled carbon nanotubes. J Phys Chem B, 107, 3712 (2003). doi: 10.1021/jp027500u. crossref(new window)

im KS, Rhee KY, Lee KH, Byun JH, Park SJ. Rheological behaviors and mechanical properties of graphite nanoplate/carbon nanotube-filled epoxy nanocomposites. J Ind Eng Chem, 16, 572 (2010). doi: 10.1016/j.jiec.2010.03.017. crossref(new window)

Zhang X, Zhang J, Wang R, Liu Z. Cationic surfactant directed polyaniline/CNT nanocables: synthesis, characterization, and enhanced electrical properties. Carbon, 42, 1455 (2004). doi: 10.1016/j.carbon.2004.01.003. crossref(new window)

Sahoo NG, Rana S, Cho JW, Li L, Chan SH. Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci, 35, 837 (2010). doi: 10.1016/j.progpolymsci.2010.03.002. crossref(new window)

Spitalsky Z, Tasis D, Papagelis K, Galiotis C. Carbon nanotubepolymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci, 35, 357 (2010). doi: 10.1016/j.progpolymsci.2009.09.003. crossref(new window)

Kim KS, Park SJ. Influence of enhanced dispersity of chemically treated MWNTs on physical properties of MWNTs/PVDF films. Macromol Res, 18, 981 (2010). crossref(new window)

Guo P, Chen X, Gao X, Song H, Shen H. Fabrication and mechanical properties of well-dispersed multiwalled carbon nanotubes/epoxy composites. Composites Sci Technol, 67, 3331 (2007). doi: 10.1016/j.compscitech.2007.03.026. crossref(new window)

Liu L, Etika KC, Liao KS, Hess LA, Bergbreiter DE, Grunlan JC. Comparison of covalently and noncovalently functionalized carbon nanotubes in epoxy. Macromol Rapid Commun, 30, 627 (2009). doi: 10.1002/marc.200800778. crossref(new window)

Spitalsky Z, Krontiras CA, Georga SN, Galiotis C. Effect of oxidation treatment of multiwalled carbon nanotubes on the mechanical and electrical properties of their epoxy composites. Compos, Part A: Appl Sci Manuf, 40, 778 (2009). doi: 10.1016/j.compositesa.2009.03.008. crossref(new window)

Bai JB, Allaoui A. Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites--experimental investigation. Compos, Part A: Appl Sci Manuf, 34, 689 (2003). doi: 10.1016/s1359-835x(03)00140-4. crossref(new window)

Yang M, Gao Y, Li H, Adronov A. Functionalization of multiwalled carbon nanotubes with polyamide 6 by anionic ring-opening polymerization. Carbon, 45, 2327 (2007). doi: 10.1016/j.carbon.2007.07.021 crossref(new window)

Gojny FH, Wichmann MHG, Fiedler B, Schulte K. Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites-a comparative study. Composites Sci Technol, 65, 2300 (2005). doi: 10.1016/j.compscitech.2005.04.021. crossref(new window)

Gong X, Liu J, Baskaran S, Voise RD, Young JS. Surfactant-assisted processing of carbon nanotube/polymer composites. Chem Mater, 12, 1049 (2000). doi: 10.1021/cm9906396. crossref(new window)

Miyagawa H, Drzal LT. Thermo-physical and impact properties of epoxy nanocomposites reinforced by single-wall carbon nanotubes. Polymer, 45, 5163 (2004). doi: 10.1016/j.polymer.2004.05.036. crossref(new window)

Kim KS, Park SJ. Influence of surface treatment of multi-walled carbon nanotubes on interfacial interaction of nanocomposites. Carbon Lett, 11, 102 (2010). crossref(new window)

Jung HT, Cho Y, Kim T, Kim TA, Park M. Preparation of amineepoxy adducts(AEA)/thin multiwalled carbon nanotubes (TWCNTs) composite particles using dry processes. Carbon Lett, 11, 107 (2010). crossref(new window)

Lee YS, Im JS, Yun SM, Nho YC, Kang PH, Jin H. X-ray photoelectron spectroscopic analysis of modified MWCNT and dynamic mechanical properties of e-beam cured epoxy resins with the MWCNT. Carbon Lett, 10, 314 (2009). crossref(new window)

Meincke O, Kaempfer D, Weickmann H, Friedrich C, Vathauer M, Warth H. Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene. Polymer, 45, 739 (2004). doi: 10.1016/j.polymer.2003.12.013. crossref(new window)

Gao J, Zhao B, Itkis ME, Bekyarova E, Hu H, Kranak V, Yu A, Haddon RC. Chemical engineering of the single-walled carbon nanotube−nylon 6 interface. J Am Chem Soc, 128, 7492 (2006). doi: 10.1021/ja057484p. crossref(new window)

Xia H, Wang Q, Qiu G. Polymer-encapsulated carbon nanotubes prepared through ultrasonically initiated in situ emulsion polymerization. Chem Mater, 15, 3879 (2003). doi: 10.1021/cm0341890. crossref(new window)

Gao J, Itkis ME, Yu A, Bekyarova E, Zhao B, Haddon RC. Continuous spinning of a single-walled carbon nanotube−nylon composite fiber. J Am Chem Soc, 127, 3847 (2005). doi: 10.1021/ja0446193 crossref(new window)

Zhao C, Hu G, Justice R, Schaefer DW, Zhang S, Yang M, Han CC. Synthesis and characterization of multi-walled carbon nanotubes reinforced polyamide 6 via in situ polymerization. Polymer, 46, 5125 (2005). doi: 10.1016/j.polymer.2005.04.065. crossref(new window)

Shao W, Wang Q, Wang F, Chen Y. The cutting of multi-walled carbon nanotubes and their strong interfacial interaction with polyamide 6 in the solid state. Carbon, 44, 2708 (2006). doi: 10.1016/j.carbon.2006.04.006. crossref(new window)

Liu, Phang IY, Shen L, Chow SY, Zhang WD. Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites. Macromolecules, 37, 7214 (2004). doi: 10.1021/ma049132t. crossref(new window)

Zhang WD, Shen L, Phang IY, Liu T. Carbon nanotubes reinforced nylon-6 composite prepared by simple melt-compounding. Macromolecules, 37, 256 (2003). doi: 10.1021/ma035594f. crossref(new window)

Chae HG, Sreekumar TV, Uchida T, Kumar S. A comparison of reinforcement efficiency of various types of carbon nanotubes in polyacrylonitrile fiber. Polymer, 46, 10925 (2005). doi: 10.1016/j.polymer.2005.08.092. crossref(new window)

Hou H, Ge JJ, Zeng J, Li Q, Reneker DH, Greiner A, Cheng SZD. Electrospun polyacrylonitrile nanofibers containing a high concentration of well-aligned multiwall carbon nanotubes. Chem Mater, 17, 967 (2005). doi: 10.1021/cm0484955. crossref(new window)

Chae HG, Minus ML, Kumar S. Oriented and exfoliated single wall carbon nanotubes in polyacrylonitrile. Polymer, 47, 3494 (2006). doi: 10.1016/j.polymer.2006.03.050 crossref(new window)

Fornes TD, Baur JW, Sabba Y, Thomas EL. Morphology and properties of melt-spun polycarbonate fibers containing singleand multi-wall carbon nanotubes. Polymer, 47, 1704 (2006). doi:10.1016/j.polymer.2006.01.003. crossref(new window)

Singh S, Pei Y, Miller R, Sundararajan PR. Long-range, entangled carbon nanotube networks in polycarbonate. Adv Funct Mater, 13, 868 (2003). doi: 10.1002/adfm.200304411. crossref(new window)

Kim KH, Jo WH. A strategy for enhancement of mechanical and electrical properties of polycarbonate/multi-walled carbon nanotube composites. Carbon, 47, 1126 (2009). doi: 10.1016/j.carbon.2008.12.043. crossref(new window)

Zou Y, Feng Y, Wang L, Liu X. Processing and properties of MWNT/HDPE composites. Carbon, 42, 271 (2004). doi: 10.1016/j.carbon.2003.10.028. crossref(new window)

Kanagaraj S, Varanda FR, Zhil’tsova TV, Oliveira MSA, Simoes JAO. Mechanical properties of high density polyethylene/carbon nanotube composites. Composites Sci Technol, 67, 3071 (2007). doi: 10.1016/j.compscitech.2007.04.024. crossref(new window)

Tang W, Santare MH, Advani SG. Melt processing and mechanical property characterization of multi-walled carbon nanotube/high density polyethylene (MWNT/HDPE) composite films. Carbon, 41, 2779 (2003). doi: 10.1016/s0008-6223(03)00387-7. crossref(new window)

Xiao KQ, Zhang LC, Zarudi I. Mechanical and rheological properties of carbon nanotube-reinforced polyethylene composites. Composites Sci Technol, 67, 177 (2007). doi: 10.1016/j.compscitech.2006.07.027. crossref(new window)

Tong X, Liu C, Cheng HM, Zhao H, Yang F, Zhang X. Surface modification of single-walled carbon nanotubes with polyethylene via in situ Ziegler–Natta polymerization. J Appl Polym Sci, 92, 3697 (2004). doi: 10.1002/app.20306. crossref(new window)

Gorrasi G, Sarno M, Di Bartolomeo A, Sannino D, Ciambelli P, Vittoria V. Incorporation of carbon nanotubes into polyethylene by high energy ball milling: Morphology and physical properties. J Polym Sci, Part B: Polym Phys, 45, 597 (2007). doi: 10.1002/polb.21070. crossref(new window)

Bin Y, Kitanaka M, Zhu D, Matsuo M. Development of highly oriented polyethylene filled with aligned carbon nanotubes by gelation/crystallization from solutions. Macromolecules, 36, 6213 (2003). doi: 10.1021/ma0301956. crossref(new window)

Wang Y, Cheng R, Liang L, Wang Y. Study on the preparation and characterization of ultra-high molecular weight polyethylene-carbon nanotubes composite fiber. Composites Sci Technol, 65, 793 (2005). doi: 10.1016/j.compscitech.2004.10.012 crossref(new window)

Ruan SL, Gao P, Yang XG, Yu TX. Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes. Polymer, 44, 5643 (2003). doi: 10.1016/s0032-3861(03)00628-1. crossref(new window)

Ruan S, Gao P, Yu TX. Ultra-strong gel-spun UHMWPE fibers reinforced using multiwalled carbon nanotubes. Polymer, 47, 1604 (2006). doi: 10.1016/j.polymer.2006.01.020. crossref(new window)

Siochi EJ, Working DC, Park C, Lillehei PT, Rouse JH, Topping CC, Bhattacharyya AR, Kumar S. Melt processing of SWCNTpolyimide nanocomposite fibers. Compos, Part B: Eng, 35, 439 (2004). doi: 10.1016/j.compositesb.2003.09.007. crossref(new window)

Ogasawara T, Ishida Y, Ishikawa T, Yokota R. Characterization of multi-walled carbon nanotube/phenylethynyl terminated polyimide composites. Compos, Part A: Appl Sci Manuf, 35, 67 (2004). doi: 10.1016/j.compositesa.2003.09.003. crossref(new window)

Yu A, Hu H, Bekyarova E, Itkis ME, Gao J, Zhao B, Haddon RC. Incorporation of highly dispersed single-walled carbon nanotubes in a polyimide matrix. Composites Sci Technol, 66, 1190 (2006). doi: 10.1016/j.compscitech.2005.10.023. crossref(new window)

Liu T, Tong Y, Zhang WD. Preparation and characterization of carbon nanotube/polyetherimide nanocomposite films. Composites Sci Technol, 67, 406 (2007). doi: 10.1016/j.compscitech.2006.09.007. crossref(new window)

Zhu BK, Xie SH, Xu ZK, Xu YY. Preparation and properties of the polyimide/multi-walled carbon nanotubes (MWNTs) nanocomposites. Composites Sci Technol, 66, 548 (2006). doi: 10.1016/j.compscitech.2005.05.038. crossref(new window)

So HH, Cho JW, Sahoo NG. Effect of carbon nanotubes on mechanical and electrical properties of polyimide/carbon nanotubes nanocomposites. Eur Polym J, 43, 3750 (2007). doi: 10.1016/j.eurpolymj.2007.06.025. crossref(new window)

Yuen SM, Ma CCM, Lin YY, Kuan HC. Preparation, morphology and properties of acid and amine modified multiwalled carbon nanotube/polyimide composite. Composites Sci Technol, 67, 2564 (2007). doi: 10.1016/j.compscitech.2006.12.006. crossref(new window)

Seo DW, Yoon WJ, Park SJ, Jo MC, Kim JS. The preparation of multiwalled CNT-PMMA nanocomposite. Carbon Lett, 7, 266 (2006).

Jia Z, Wang Z, Xu C, Liang J, Wei B, Wu D, Zhu S. Study on poly(methyl methacrylate)/carbon nanotube composites. Mater Sci Eng, A, 271, 395 (1999). doi: 10.1016/s0921-5093(99)00263-4. crossref(new window)

Cooper CA, Ravich D, Lips D, Mayer J, Wagner HD. Distribution and alignment of carbon nanotubes and nanofibrils in a polymer matrix. Composites Sci Technol, 62, 1105 (2002). doi: 10.1016/s0266-3538(02)00056-8. crossref(new window)

Kim KH, Jo WH. Improvement of tensile properties of poly(methyl methacrylate) by dispersing multi-walled carbon nanotubes functionalized with poly(3-hexylthiophene)-graft-poly(methyl methacrylate). Composites Sci Technol, 68, 2120 (2008). doi: 10.1016/j.compscitech.2008.03.008. crossref(new window)

Sabba Y, Thomas EL. High-concentration dispersion of singlewall carbon nanotubes. Macromolecules, 37, 4815 (2004). doi:10.1021/ma049706u. crossref(new window)

Bae DY, Lee HS. Enhanced compatibility of PC/PMMA alloys by adding multiwall carbon nanotubes. Carbon Lett, 11, 83 (2010). crossref(new window)

Wang M, Pramoda KP, Goh SH. Enhancement of interfacial adhesion and dynamic mechanical properties of poly(methyl methacrylate)/multiwalled carbon nanotube composites with amine-terminated poly(ethylene oxide). Carbon, 44, 613 (2006). doi: 10.1016/j.carbon.2005.10.001. crossref(new window)

Velasco-Santos C, Martínez-Hernandez AL, Fisher FT, Ruoff R, Castano VM. Improvement of thermal and mechanical properties of carbon nanotube composites through chemical functionalization. Chem Mater, 15, 4470 (2003). doi: 10.1021/cm034243c. crossref(new window)

Park SJ, Cho MS, Lim ST, Choi HJ, Jhon MS. Synthesis and dispersion characteristics of multi-walled carbon nanotube composites with poly(methyl methacrylate) prepared by in-situ bulk polymerization. Macromol Rapid Commun, 24, 1070 (2003). doi: 10.1002/marc.200300089. crossref(new window)

Manchado MAL, Valentini L, Biagiotti J, Kenny JM. Thermal and mechanical properties of single-walled carbon nanotubes-polypropylene composites prepared by melt processing. Carbon, 43, 1499 (2005). doi: 10.1016/j.carbon.2005.01.031. crossref(new window)

Kearns JC, Shambaugh RL. Polypropylene fibers reinforced with carbon nanotubes. J Appl Polym Sci, 86, 2079 (2002). doi:10.1002/app.11160. crossref(new window)

McIntosh D, Khabashesku VN, Barrera EV. Benzoyl peroxide initiated in situ functionalization, processing, and mechanical properties of single-walled carbon nanotube−polypropylene composite fibers. J Phys Chem C, 111, 1592 (2007). doi: 10.1021/jp065399d. crossref(new window)

Chang TE, Jensen LR, Kisliuk A, Pipes RB, Pyrz R, Sokolov AP. Microscopic mechanism of reinforcement in single-wall carbon nanotube/polypropylene nanocomposite. Polymer, 46, 439 (2005). doi: 10.1016/j.polymer.2004.11.030. crossref(new window)

Zhao P, Wang K, Yang H, Zhang Q, Du R, Fu Q. Excellent tensile ductility in highly oriented injection-molded bars of polypropylene/carbon nanotubes composites. Polymer, 48, 5688 (2007). doi:10.1016/j.polymer.2007.07.022. crossref(new window)

Grady BP, Pompeo F, Shambaugh RL, Resasco DE. Nucleation of polypropylene crystallization by single-walled carbon nanotubes. J Phys Chem B, 106, 5852 (2002). doi: 10.1021/jp014622y. crossref(new window)

Shim YS, Park SJ. Influence of glycidyl methacrylate grafted multiwalled carbon nanotubes on viscoelastic behaviors of polypropylene nanocomposites. Carbon Lett, 11, 311 (2010). crossref(new window)

Karevan M, Pucha RV, Bhuiyan MA, Kalaitzidou K. Effect of interphase modulus and nanofiller agglomeration on the tensile modulus of graphite nanoplatelets and carbon nanotube reinforced polypropylene nanocomposites. Carbon Lett, 11, 325 (2010). crossref(new window)

Safadi B, Andrews R, Grulke EA. Multiwalled carbon nanotube polymer composites: synthesis and characterization of thin films. J Appl Polym Sci, 84, 2660 (2002). doi: 10.1002/app.10436. crossref(new window)

Andrews R, Jacques D, Minot M, Rantell T. Fabrication of carbon multiwall nanotube/polymer composites by shear mixing. Macromolecular Materials and Engineering, 287, 395 (2002). doi: 10.1002/1439-2054(20020601)287:6<395::aid-mame395>;2-s. crossref(new window)

Xie L, Xu F, Qiu F, Lu H, Yang Y. Single-walled carbon nanotubes functionalized with high bonding density of polymer layers and enhanced mechanical properties of composites. Macromolecules, 40, 3296 (2007). doi: 10.1021/ma062103t. crossref(new window)

Xiong J, Zheng Z, Qin X, Li M, Li H, Wang X. The thermal and mechanical properties of a polyurethane/multi-walled carbon nanotube composite. Carbon, 44, 2701 (2006). doi: 10.1016/j.carbon.2006.04.005. crossref(new window)

Koerner H, Liu W, Alexander M, Mirau P, Dowty H, Vaia RA. Deformation-morphology correlations in electrically conductive carbon nanotube--thermoplastic polyurethane nanocomposites. Polymer, 46, 4405 (2005). doi: 10.1016/j.polymer.2005.02.025. crossref(new window)

Xu M, Zhang T, Gu B, Wu J, Chen Q. Synthesis and properties of novel polyurethane−urea/multiwalled carbon nanotube composites. Macromolecules, 39, 3540 (2006). doi: 10.1021/ma052265+. crossref(new window)

Sen R, Zhao B, Perea D, Itkis ME, Hu H, Love J, Bekyarova E, Haddon RC. Preparation of single-walled carbon nanotube reinforced polystyrene and polyurethane nanofibers and membranes by electrospinning. Nano Lett, 4, 459 (2004). doi: 10.1021/nl035135s. crossref(new window)

Chen W, Tao X. Self-organizing alignment of carbon nanotubes in thermoplastic polyurethane. Macromol Rapid Commun, 26, 1763 (2005). doi: 10.1002/marc.200500531. crossref(new window)

Kim YJ, Jang YK, Kim WN, Park M, Kim JK, Yoon HG. Electrical enhancement of polyurethane composites filled with multiwalled carbon nanotubes by controlling their dispersion and damage. Carbon Lett, 11, 96 (2010). crossref(new window)

Paiva MC, Zhou B, Fernando KAS, Lin Y, Kennedy JM, Sun YP. Mechanical and morphological characterization of polymer-carbon nanocomposites from functionalized carbon nanotubes. Carbon, 42, 2849 (2004). doi: 10.1016/j.carbon.2004.06.031. crossref(new window)

Ryan KP, Cadek M, Nicolosi V, Blond D, Ruether M, Armstrong G, Swan H, Fonseca A, Nagy JB, Maser WK, Blau WJ, Coleman JN. Carbon nanotubes for reinforcement of plastics? A case study with poly(vinyl alcohol). Composites Sci Technol, 67, 1640 (2007). doi:10.1016/j.compscitech.2006.07.006. crossref(new window)

Zhang X, Liu T, Sreekumar TV, Kumar S, Moore VC, Hauge RH, Smalley RE. Poly(vinyl alcohol)/SWNT composite film. Nano Lett, 3, 1285 (2003). doi: 10.1021/nl034336t. crossref(new window)

Cadek M, Coleman JN, Ryan KP, Nicolosi V, Bister G, FonsecaA, Nagy JB, Szostak K, Beguin F, Blau WJ. Reinforcement ofpolymers with carbon nanotubes: the role of nanotube surface area.Nano Lett, 4, 353 (2004). doi: 10.1021/nl035009o. crossref(new window)

Kim YY, Yun J, Lee YS, Kim HI. Electro-responsive transdermal drug release of MWCNT/PVA nanocomposite hydrogels. Carbon Lett, 11, 211 (2010). crossref(new window)

Shaffer MSP, Windle AH. Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites. Adv Mater, 11, 937 (1999). doi: 10.1002/(sici)1521-4095(199908)11:11<937::aidadma937>;2-9. crossref(new window)