JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Molecular structure effects of the pitches on preparation of activated carbon fibers from electrospinning
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 12, Issue 2,  2011, pp.70-80
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2011.12.2.070
 Title & Authors
Molecular structure effects of the pitches on preparation of activated carbon fibers from electrospinning
Kim, Bo-Hye; Wazir, Arshad Hussain; Yang, Kap-Seung; Bang, Yun-Hyuk; Kim, Sung-Ryong;
  PDF(new window)
 Abstract
Two pitches with different average molecular structures were electrospun and compared in terms of the properties of their fibers after oxidative stabilization, carbonization, and activation. The precursor with a higher molecular weight and greater content of aliphatic groups (Pitch A) resulted in better solubility and spinnability compared to that with a lower molecular weight and lower aliphatic group content (Pitch B). The electrical conductivity of the carbon fiber web from Pitch A of 67 S/cm was higher than that from Pitch B of 52 S/cm. The carbon fiber web based on Pitch A was activated more readily with lower activation energy, resulting in a higher specific surface area compared to the carbon fiber based on Pitch B (Pitch A, 2053 ; Pitch B, 1374 ).
 Keywords
pitch;electrospinning;carbon fiber;spinnability;molecular structure;activation;
 Language
English
 Cited by
1.
Effect of carbonization temperature on electrical conductivity of carbon papers prepared from petroleum pitch-coated glass fibers,;;;

Journal of Industrial and Engineering Chemistry, 2013. vol.19. 3, pp.1040-1043 crossref(new window)
2.
Pitch based carbon fibers for automotive body and electrodes,;;;

Carbon letters, 2014. vol.15. 3, pp.162-170 crossref(new window)
1.
Carbon Nanofibers Prepared via Electrospinning, Advanced Materials, 2012, 24, 19, 2547  crossref(new windwow)
2.
Effects of improved porosity and electrical conductivity on pitch-based carbon nanofibers for high-performance gas sensors, Journal of Porous Materials, 2012, 19, 6, 989  crossref(new windwow)
3.
Boron-doped carbon prepared from PFO as a lithium-ion battery anode, Solid State Sciences, 2014, 34, 38  crossref(new windwow)
4.
Effect of Crystallinity on the Wettability of Petroleum Coke by Coal Tar Pitch, Energy & Fuels, 2016, 30, 4, 3549  crossref(new windwow)
5.
Effect of carbonization temperature on electrical conductivity of carbon papers prepared from petroleum pitch-coated glass fibers, Journal of Industrial and Engineering Chemistry, 2013, 19, 3, 1040  crossref(new windwow)
6.
Preparation of well-controlled porous carbon nanofiber materials by varying the compatibility of polymer blends, Polymer International, 2014, 63, 8, 1471  crossref(new windwow)
7.
Pitch based carbon fibers for automotive body and electrodes, Carbon letters, 2014, 15, 3, 162  crossref(new windwow)
8.
Coke–pitch interactions during anode preparation, Fuel, 2014, 117, 598  crossref(new windwow)
 References
1.
Burchell TD. Carbon Materials for Advanced Technologies, Pergamon, Amsterdam, 95-118 (1999).

2.
Li Z, Kruk M, Jaroniec M, Ryu SK. Characterization of structural and surface properties of activated carbon fibers. J Colloid Interface Sci, 204, 151 (1998). doi: 10.1006/jcis.1998.5515. crossref(new window)

3.
Ryu Z, Rong H, Zheng J, Wang M, Zhang B. Microstructure and chemical analysis of PAN-based activated carbon fibers prepared by different activation methods. Carbon, 40, 1144 (2002). doi:10.1016/s0008-6223(02)00105-7. crossref(new window)

4.
Jansen RJJ, van Bekkum H. XPS of nitrogen-containing functional groups on activated carbon. Carbon, 33, 1021 (1995). doi:10.1016/0008-6223(95)00030-h. crossref(new window)

5.
Yang CM, El-Merraoui M, Seki H, Kaneko K. Characterization of nitrogen-alloyed activated carbon fiber. Langmuir, 17, 675 (2001). doi: 10.1021/la000307b. crossref(new window)

6.
Kaneko K, Ishii C. Superhigh surface area determination of microporous solids. Colloid Surface, 67, 203 (1992). doi: 10.1016/0166-6622(92)80299-h. crossref(new window)

7.
Marsh H, Heintz EA, Rodriguez-Reinoso F. Introduction to Carbon Technologies, University of Alicante, Alicante, Spain, 425-441 (1997).

8.
Otani S, Okuda K, Masuda H. Carbon Fiber, Kindai Henshu Ltd., Tokyo, Japan, 70-110 (1993).

9.
Watanabe F, Korai Y, Mochida I, Nishimura Y. Structure of meltblown mesophase pitch-based carbon fiber. Carbon, 38, 741 (2000). doi: 10.1016/s0008-6223(99)00148-7. crossref(new window)

10.
Korai Y, Ishida S, Watanabe F, Yoon SH, Wang YG, Mochida I, Kato I, Nakamura T, Sakai Y, Komatsu M. Preparation of carbon fiber from isotropic pitch containing mesophase spheres. Carbon, 35, 1733 (1997). doi: 10.1016/s0008-6223(97)00128-0. crossref(new window)

11.
Formhals A. Process and Apparatus for Preparing Artificial Threads. US patent 1975504 (1934).

12.
Vollrath F, Fairbrother WJ, Williams RJP, Tillinghast EK, Bernstein DT, Gallagher KS, Townley MA. Compounds in the droplets of the orb spider’s viscid spiral. Nature, 345, 526 (1990). doi:10.1038/345526a0. crossref(new window)

13.
Deitzel JM, Kleinmeyer J, Harris D, Beck Tan NC. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 42, 261 (2001). doi: 10.1016/s0032-3861(00)00250-0. crossref(new window)

14.
Koombhongse S, Liu W, Reneker DH. Flat polymer ribbons and other shapes by electrospinning. J Polym Sci, Part B: Polym Phys, 39, 2598 (2001). doi: 10.1002/polb.10015. crossref(new window)

15.
Park SH, Kim C, Choi YO, Yang KS. Preparations of pitch-based CF/ACF webs by electrospinning. Carbon, 41, 2655 (2003). doi:10.1016/s0008-6223(03)00272-0. crossref(new window)

16.
Yang KS, Edie DD, Lim DY, Kim YM, Choi YO. Preparation of carbon fiber web from electrostatic spinning of PMDA-ODA poly(amic acid) solution. Carbon, 41, 2039 (2003). doi: 10.1016/s0008-6223(03)00174-x. crossref(new window)

17.
Kim C, Yang KS. Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning. Appl Phys Lett, 83, 1216 (2003). doi: 10.1063/1.1599963. crossref(new window)

18.
Kim C, Yang KS. Preparation and characterization of PAN-based web of carbon nanofibers by electrostatic spinning. Carbon Sci, 3, 210 (2002).

19.
Park SH, Kim C, Yang KS. Preparation of carbonized fiber web from electrospinning of isotropic pitch. Synth Met, 143, 175 (2004). doi: 10.1016/j.synthmet.2003.11.006. crossref(new window)

20.
Guillen MD, Iglesias MJ, Dominguez A, Blanco CG. Fourier transform infrared study of coal tar pitches. Fuel, 74, 1595 (1995). doi:10.1016/0016-2361(95)00139-v. crossref(new window)

21.
Arshad HW, Lutfullah K, Imtiaz A, Ghosia L. Preparation of mesophase from coal tar pitch[J]. New Carbon Mater, 18, 281 (2003).

22.
Akrami HA, Yardim MF, Akar A, Ekinci E. FT-i.r. characterization of pitches derived from Avgamasya asphaltite and Raman-Dinçer heavy crude. Fuel, 76, 1389 (1997). doi: 10.1016/s0016-2361(97)00100-2. crossref(new window)

23.
Lewis IC. Chemistry of pitch carbonization. Fuel, 66, 1527 (1987). doi: 10.1016/0016-2361(87)90012-3. crossref(new window)

24.
Boenigk W, Haenel MW, Zander M. Structural features and mesophase formation of coal-tar pitch fractions obtained by preparative size exclusion chromatography. Fuel, 69, 1226 (1990). doi:10.1016/0016-2361(90)90281-t. crossref(new window)

25.
Kershaw JR. Spectroscopic Analysis of Coal Liquids, Elsevier, Amsterdam, 247-265 (1989).

26.
Diaz C, Blanco CG. NMR: a powerful tool in the characterization of coal tar pitch. Energy Fuels, 17, 907 (2003). doi: 10.1021/ef020114r. crossref(new window)

27.
Mokoena K, Van der Walt TJ, Morgan TJ, Herod AA, Kandiyoti R. Heat treatment of medium-temperature Sasol-Lurgi gasifier coaltar pitch for polymerizing to higher value products. Fuel, 87, 751 (2008). doi: 10.1016/j.fuel.2007.05.006. crossref(new window)

28.
Zhang C, Yuan X, Wu L, Han Y, Sheng J. Study on morphology of electrospun poly(vinyl alcohol) mats. Eur Polym J, 41, 423 (2005). doi: 10.1016/j.eurpolymj.2004.10.027. crossref(new window)

29.
Ziabicki A. Fundamentals of Fibre Formation: The Science of Fibre Spinning and Drawing, Wiley, London (1976).

30.
Manocha LM, Patel M, Manocha SM, Vix-Guterl C, Ehrburger P. Carbon/carbon composites with heat-treated pitches: I. Effect of treatment in air on the physical characteristics of coal tar pitches and the carbon matrix derived therefrom. Carbon, 39, 663 (2001). doi: 10.1016/s0008-6223(00)00178-0. crossref(new window)

31.
Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl Chem, 57, 603 (1985). doi: 10.1351/pac198557040603. crossref(new window)

32.
Horvath G, Kawazoe K. Method for the calculation of effective pore size distribution in molecular sieve carbon. J Chem Eng Jpn, 16, 470 (1983). doi: 10.1252/jcej.16.470. crossref(new window)

33.
de Boer JH, Lippens BC, Linsen BG, Broekhoff JCP, van den Heuvel A, Osinga TJ. Thet-curve of multimolecular N2-adsorption. J Colloid Interface Sci, 21, 405 (1966). doi: 10.1016/0095-8522(66)90006-7. crossref(new window)

34.
Bansal RC, Goyal M. Activated Carbon Adsorption, Taylor & Francis, Boca Raton (2005).

35.
Zickler GA, Smarsly B, Gierlinger N, Peterlik H, Paris O. A reconsideration of the relationship between the crystallite size La of carbons determined by X-ray diffraction and Raman spectroscopy. Carbon, 44, 3239 (2006). doi: 10.1016/j.carbon.2006.06.029. crossref(new window)

36.
Kinoshita K. Carbon, Electrochemical and Physicochemical Properties, Wiley, New York (1987).

37.
Qu D. Studies of the activated carbons used in double-layer supercapacitors. J Power Sources, 109, 403 (2002). doi: 10.1016/s0378-7753(02)00108-8. crossref(new window)

38.
Lee YS, Kim YH, Hong JS, Suh JK, Cho GJ. The adsorption properties of surface modified activated carbon fibers for hydrogen storages. Catal Today, 120, 420 (2007). doi: 10.1016/j.cattod.2006.09.014. crossref(new window)