Advanced SearchSearch Tips
Influence of a silane coupling agent on the optoelectrical properties of carbon nanotube/binder hybrid thin films
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 12, Issue 2,  2011, pp.90-94
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2011.12.2.090
 Title & Authors
Influence of a silane coupling agent on the optoelectrical properties of carbon nanotube/binder hybrid thin films
Han, Joong-Tark; Woo, Jong-Seok; Jeong, Hee-Jin; Jeong, Seung-Yol; Lee, Geon-Woong;
  PDF(new window)
We present the effect of a coupling agent on the optoelectrical properties of few-walled carbon nanotube (FWCNT)/epoxy resin hybrid films fabricated on glass substrates. The FWCNT/epoxy resin mixture solution was successfully prepared by the direct mixing of a -treated FWCNT solution and epoxy resin. FWCNT/binder hybrid films containing different amounts of the coupling agent were then fabricated on UV-ozone-treated glass substrates. To determine the critical binder content (), the effects of varying the binder content in the FWCNT/silane hybrid films on their optoelectrical properties were investigated. In this system, the value was approximately 75 wt%. It was found that above , the coupling agent effectively decreased the sheet resistance of the films. From microscopy images, it was observed that by adding the coupling agent, more uniform FWCNT/binder films were formed.
few-walled carbon nanotube;silane coupling agent;conducting;optoelectrical properties;
 Cited by
Chemically modified graphene oxide/polybenzimidazobenzophenanthroline nanocomposites with improved electrical conductivity, Polymer, 2012, 53, 18, 3937  crossref(new windwow)
DNA Origami Nanopatterning on Chemically Modified Graphene, Angewandte Chemie, 2012, 124, 4, 936  crossref(new windwow)
Influence of amine-grafted multi-walled carbon nanotubes on physical and rheological properties of PMMA-based nanocomposites, Journal of Solid State Chemistry, 2011, 184, 11, 3021  crossref(new windwow)
DNA Origami Nanopatterning on Chemically Modified Graphene, Angewandte Chemie International Edition, 2012, 51, 4, 912  crossref(new windwow)
Wu Z, Chen Z, Du X, Logan JM, Sippel J, Nikolou M, Kamaras K, Reynolds JR, Tanner DB, Hebard AF, Rinzler AG. Transparent, conductive carbon nanotube films. Science, 305, 1273 (2004). doi:10.1126/science.1101243. crossref(new window)

Zhang D, Ryu K, Liu X, Polikarpov E, Ly J, Tompson ME, Zhou C. Transparent, Conductive, and Flexible Carbon Nanotube Films and Their Application in Organic Light-Emitting Diodes. Nano Lett, 6, 1880 (2006). doi: 10.1021/nl0608543. crossref(new window)

Zhou Y, Hu L, Gruner G. A method of printing carbon nanotube thin films. Appl Phys Lett, 88, 123109 (2006). doi: 10.1063/1.2187945. crossref(new window)

Parekh BB, Fanchini G, Eda G, Chhowalla M. Improved conductivity of transparent single-wall carbon nanotube thin films via stable postdeposition functionalization. Appl Phys Lett, 90, 121913 (2007). doi: 10.1063/1.2715027. crossref(new window)

Geng HZ, Kim KK, So KP, Lee YS, Chang Y, Lee YH. Effect of acid treatment on carbon nanotube-based flexible transparent conducting films. J Am Chem Soc, 129, 7758 (2007). doi: 10.1021/ja0722224. crossref(new window)

Kaempgen M, Duesberg GS, Roth S. Transparent carbon nanotube coatings. Appl Surf Sci, 252, 425 (2005). doi: 10.1016/j.apsusc.2005.01.020. crossref(new window)

Bocharova V, Kiriy A, Oertel U, Stamm M, Stoffelbach F, Jerome R, Detrembleur C. Ultrathin transparent conductive films of polymer-modified multiwalled carbon nanotubes. J Phys Chem B, 110,14640 (2006). doi: 10.1021/jp062458e crossref(new window)

Han JT, Kim JS, Jeong HD, Jeong HJ, Jeong SY, Lee GW. Modulating conductivity, environmental stability of transparent conducting nanotube films on flexible substrates by interfacial engineering. ACS Nano, 4, 4551 (2010). doi: 10.1021/nn100650e. crossref(new window)

Han JT, Kim JS, Jeong HD, Jeong HJ, Jeong SY, Lee GW. Noncovalent titania wrapping of single-walled carbon nanotubes for environmentally stable transparent conductive thin films. J Mater Chem, 20, 8557 (2010). doi: 10.1039/C0JM02059A. crossref(new window)

van de Lagemaat J, Barnes TM, Rumbles G, Shaheen SE, Coutts TJ, Weeks C, Levitsky I, Peltola J, Glatkowski P. Organic solar cells with carbon nanotubes replacing In[sub 2]O[sub 3]:Sn as the transparent electrode. Appl Phys Lett, 88, 233503 (2006). doi: 10.1063/1.2210081. crossref(new window)

Geng HZ, Kim KK, Lee K, Kim GY, Choi HK, Lee DS, An KY, Lee YH, Chang Y, Lee YS, Kim B, Lee YJ. Dependence of material quality on performance of flexible transparent conducting films with single-walled carbon nanotubes. NANO, 2, 157 (2007). doi: 10.1142/S1793292007000532. crossref(new window)

Han JT, Kim SY, Jeong HJ, Jeong SY, Lee GW. Molecular engineering to minimize the sheet resistance increase of single-walled carbon nanotube/binder hybrid conductive thin films. J Phys Chem C, 113, 16915 (2009). doi: 10.1021/jp9042073. crossref(new window)

Han JT, Kim SY, Jeong HJ, Lee GW. Wettability controlled fabrication of highly transparent and conductive carbon nanotube/silane sol hybrid thin films. Ind Eng Chem Res, 48, 6303 (2009). doi:10.1021/ie900301v. crossref(new window)

Zhao W, Song C, Pehrsson PE. Water-soluble and optically pHsensitive single-walled carbon nanotubes from surface modification. J Am Chem Soc, 124, 12418 (2002). doi: 10.1021/ja027861n. crossref(new window)

Han JT, Kim SY, Kim JS, Jeong HJ, Jeong SY, Lee GW. Enhanced electrical properties of transparent carbon nanotube/binder hybrid thin films: effects of the silane sol and the bundle size of the carbon nanotubes. Ind Eng Chem Res, 49, 6416 (2010). doi: 10.1021/ie100305g. crossref(new window)