JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A review of elemental mercury removal processing
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 12, Issue 3,  2011, pp.121-130
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2011.12.3.121
 Title & Authors
A review of elemental mercury removal processing
Bae, Kyong-Min; Kim, Byung-Joo; Park, Soo-Jin;
  PDF(new window)
 Abstract
Public concern has recently increased over the potential risk of toxic elements emitted from anthropogenic sources. Among these, mercury has drawn special attention owing to its increasing level of bioaccumulation in the environment and in the food chain, with potential risks for human health. This paper presents an overview of research related to mercury control technology and identifies areas requiring additional research and development. It critically reviews measured mercury emissions progress in the development of promising control technologies, including catalytic oxidation, sorbent injection, photochemistry oxidation, and air pollution control devices.
 Keywords
mercury vapor removal;catalytic oxidation;sorbent injection;photochemistry oxidation;air pollution control devices;
 Language
English
 Cited by
1.
Stability and Performance of Physically Immobilized Ionic Liquids for Mercury Adsorption from a Gas Stream, Industrial & Engineering Chemistry Research, 2015, 54, 48, 12114  crossref(new windwow)
2.
Elemental mercury vapor adsorption of copper-coated porous carbonaceous materials, Microporous and Mesoporous Materials, 2012, 163, 270  crossref(new windwow)
3.
Facile fabrication of Poly(vinyl alcohol)/Silica composites for removal of Hg(II) from water, Macromolecular Research, 2015, 23, 1, 21  crossref(new windwow)
4.
Electrochemical properties of PEO/PMMA blend-based polymer electrolytes using imidazolium salt-supported silica as a filler, Research on Chemical Intermediates, 2013, 39, 7, 3279  crossref(new windwow)
 References
1.
Darbha GK, Singh AK, Rai US, Yu E, Yu H, Chandra Ray P. Selective detection of mercury (II) ion using nonlinear optical properties of gold nanoparticles. J Am Chem Soc, 130, 8038 (2008). http://dx.doi.org/10.1021/ja801412b. crossref(new window)

2.
Pavlish JH, Hamre LL, Zhuang Y. Mercury control technologies for coal combustion and gasification systems. Fuel, 89, 838 (2010). http://dx.doi.org/10.1016/j.fuel.2009.05.021. crossref(new window)

3.
Ji H, Kim J, Yoo JW, Lee HS, Park KM, Kang Y. A highly Hg(II)-selective chemosensor with unique diarylethene fluorophore. Bull Korean Chem Soc, 31, 1371 (2010). http://dx.doi.org/10.5012/bkcs.2010.31.5.1371. crossref(new window)

4.
ShamsiJazeyi H, Kaghazchi T. Investigation of nitric acid treatment of activated carbon for enhanced aqueous mercury removal. J Ind Eng Chem, 16, 852 (2010). http://dx.doi.org/10.1016/j.jiec.2010.03.012. crossref(new window)

5.
Galbreath KC, Zygarlicke CJ. Mercury transformations in coal combustion flue gas. Fuel Process Technol, 65-66, 289 (2000). http://dx.doi.org/10.1016/s0378-3820(99)00102-2. crossref(new window)

6.
Jeon SH, Eom Y, Lee TG. Photocatalytic oxidation of gas-phase elemental mercury by nanotitanosilicate fibers. Chemosphere, 71, 969 (2008). http://dx.doi.org/10.1016/j.chemosphere.2007.11.050. crossref(new window)

7.
Girginova PI, Daniel-da-Silva AL, Lopes CB, Figueira P, Otero M, Amaral VS, Pereira E, Trindade T. Silica coated magnetite particles for magnetic removal of $Hg_2+$ from water. J Colloid Interface Sci, 345, 234 (2010). http://dx.doi.org/10.1016/j.jcis.2010.01.087. crossref(new window)

8.
Skodras G, Diamantopoulou I, Pantoleontos G, Sakellaropoulos GP. Kinetic studies of elemental mercury adsorption in activated carbon fixed bed reactor. J Hazard Mater, 158, 1 (2008). http://dx.doi.org/10.1016/j.jhazmat.2008.01.073. crossref(new window)

9.
Okwadha GD. Thermal removal of mercury in spent powdered activated carbon from TOXECON process. J Environ Eng, 135, 1032 (2009). http://dx.doi.org/10.1061/(ASCE)EE.1943-7870.0000074. crossref(new window)

10.
Tripathi VS, Ramachandran PK. Studies on metal impregnated activated carbon: complete pore structure analysis. Carbon, 20, 25 (1982). http://dx.doi.org/10.1016/0008-6223(82)90069-0. crossref(new window)

11.
Lee SS, Lee JY, Keener TC. The effect of methods of preparation on the performance of cupric chloride-impregnated sorbents for the removal of mercury from flue gases. Fuel, 88, 2053 (2009). http://dx.doi.org/10.1016/j.fuel.2009.01.027. crossref(new window)

12.
Schofield K. Fuel-mercury combustion emissions: an important heterogeneous mechanism and an overall review of its implications. Environ Sci Technol, 42, 9014 (2008). http://dx.doi.org/10.1021/es801440g. crossref(new window)

13.
Lee SS, Lee JY, Khang SJ, Keener TC. Modeling of mercury oxidation and adsorption by cupric chloride-impregnated carbon sorbents. Ind Eng Chem Res, 48, 9049 (2009). http://dx.doi.org/10.1021/ie900619v. crossref(new window)

14.
Kang SC, Im JS, Lee YS. Improved sensitivity of an NO gas sensor by chemical activation of eectrospun carbon fibers. Carbon Lett, 12, 21 (2011). crossref(new window)

15.
Brown TD, Smith DN, Hargis RA Jr., O'Dowd WJ. Mercury measurement and its control: what we know, have learned, and need to further investigate. J Air Waste Manage Assoc, 49, 628 (1999). crossref(new window)

16.
Wang SX, Zhang L, Li GH, Wu Y, Hao JM, Pirrone N, Sprovieri F, Ancora MP. Mercury emission and speciation of coal-fired power plants in China. Atmos Chem Phys, 10, 1183 (2010). http://dx.doi.org/10.5194/acp-10-1183-2010. crossref(new window)

17.
Lee W, Bae GN. Removal of elemental mercury (Hg(0)) by nanosized V2O5/TiO2 catalysts. Environ Sci Technol, 43, 1522 (2009). http://dx.doi.org/10.1021/es802456y. crossref(new window)

18.
Li S, Cheng CM, Chen B, Cao Y, Vervynckt J, Adebambo A, Pan WP. Investigation of the relationship between particulate-bound mercury and properties of fly ash in a full-scale 100 MWe pulverized coal combustion boiler. Energy Fuels, 21, 3292 (2007). http://dx.doi.org/10.1021/ef0701384. crossref(new window)

19.
Cao Y, Gao Z, Zhu J, Wang Q, Huang Y, Chiu C, Parker B, Chu P, Pan Wp. Impacts of halogen additions on mercury oxidation, in a slipstream selective catalyst reduction (SCR), reactor when burning sub-bituminous coal. Environ Sci Technol, 42, 256 (2007). http://dx.doi.org/10.1021/es071281e. crossref(new window)

20.
Laumb JD, Benson SA, Olson EA. X-ray photoelectron spectroscopy analysis of mercury sorbent surface chemistry. Fuel Process Technol, 85, 577 (2004). http://dx.doi.org/10.1016/j.fuproc.2003.11.008. crossref(new window)

21.
Streets DG, Hao J, Wu Y, Jiang J, Chan M, Tian H, Feng X. Anthropogenic mercury emissions in China. Atmos Environ, 39, 7789 (2005). http://dx.doi.org/10.1016/j.atmosenv.2005.08.029. crossref(new window)

22.
Wang H, Zhou S, Xiao L, Wang Y, Liu Y, Wu Z. Titania nanotubes— a unique photocatalyst and adsorbent for elemental mercury removal. Catalysis Today in press. http://dx.doi.org/10.1016/j.cattod.2011.03.006. crossref(new window)

23.
Lee SS, Lee JY, Keener TC. Mercury oxidation and adsorption characteristics of chemically promoted activated carbon sorbents. Fuel Process Technol, 90, 1314 (2009). http://dx.doi.org/10.1016/j.fuproc.2009.06.020. crossref(new window)

24.
Zeng H, Jin F, Guo J. Removal of elemental mercury from coal combustion flue gas by chloride-impregnated activated carbon. Fuel, 83, 143 (2004). http://dx.doi.org/10.1016/s0016-2361(03)00235-7. crossref(new window)

25.
Hu C, Zhou J, Luo Z, Cen K. Oxidative adsorption of elemental mercury by activated carbon in simulated coal-fired flue gas. Energy Fuels, 25, 154 (2010). http://dx.doi.org/10.1021/ef101100y. crossref(new window)

26.
Qiao S, Chen J, Li J, Qu Z, Liu P, Yan N, Jia J. Adsorption and catalytic oxidation of gaseous elemental mercury in flue gas over MnOx/alumina. Ind Eng Chem Res, 48, 3317 (2009). http://dx.doi.org/10.1021/ie801478w. crossref(new window)

27.
Granite EJ, Pennline HW, Hargis RA. Novel sorbents for mercury removal from flue gas. Ind Eng Chem Res, 39, 1020 (2000). http://dx.doi.org/10.1021/ie990758v. crossref(new window)

28.
Vidic RD, Siler DP. Vapor-phase elemental mercury adsorption by activated carbon impregnated with chloride and chelating agents. Carbon, 39, 3 (2001). http://dx.doi.org/10.1016/s0008-6223(00)00081-6. crossref(new window)

29.
Li Y, Murphy P, Wu CY. Removal of elemental mercury from simulated coal-combustion flue gas using a $SiO_2-TiO_2$ nanocomposite. Fuel Process Technol, 89, 567 (2008). http://dx.doi.org/10.1016/j.fuproc.2007.10.009. crossref(new window)

30.
Granite EJ, Pennline HW. Photochemical removal of mercury from flue gas. Ind Eng Chem Res, 41, 5470 (2002). http://dx.doi.org/10.1021/ie020251b. crossref(new window)

31.
Dickinson RG, Sherrill MS. Formation of ozone by optically excited mercury vapor. Proc Natl Acad Sci U S A, 12, 175 (1926). crossref(new window)

32.
Padmini E, Prakash SK, Miranda LR. Photocatalytic degradation of quinol and blue FFS acid using TiO2 and doped TiO2. Carbon Lett, 11, 332 (2010). crossref(new window)

33.
Kondratev VN. Chemical Kinetics of Gas Reactions, Pergamon Press, New York (1964).

34.
Volman DH. Photochemical Gas Phase Reactions in the Hydrogen-Oxygen System. Advances in Photochemistry Vol. 43, Wiley-Interscience, New York (1963).

35.
Maron SH, Lando JB, Prutton CF. Fundamentals of Physical Chemistry, Macmillan, New York (1974).

36.
Bamford CH, Tipper CFH, Compton RG. The Formation and Decay of Excited Species. Comprehensive Chemical Kinetics Vol. 3, Elsevier, New York (1969).

37.
Stankov N. Application of mercury isotopes and their production. J Radioanal Nucl Chem, 205, 175 (1996). http://dx.doi.org/10.1007/bf02039401. crossref(new window)

38.
Grossman MV. US Patent 5,061,353 (1991).

39.
Woo KJ, Kang SH, Kim SM, Bae JW, Jun KW. Performance of a slurry bubble column reactor for Fischer-Tropsch synthesis: determination of optimum condition. Fuel Process Technol, 91, 434 (2010). http://dx.doi.org/10.1016/j.fuproc.2009.04.021. crossref(new window)

40.
Pitoniak E, Wu CY, Mazyck DW, Powers KW, Sigmund W. Adsorption enhancement mechanisms of silica-titania nanocomposites for elemental mercury vapor removal. Environ Sci Technol, 39, 1269 (2005). http://dx.doi.org/10.1021/es049202b. crossref(new window)

41.
Jeon SH, Eom Y, Lee TG. Photocatalytic Oxidation of Gas-Phase Elemental Mercury by Nanotitanosilicate Fibers. Chemosphere, 71, 969 (2008). http://dx.doi.org/10.1016/j.chemosphere.2007.11.050. crossref(new window)

42.
Lee TG, Hyun JE. Structural effect of the in situ generated titania on its ability to oxidize and capture the gas-phase elemental mercury. Chemosphere, 62, 26 (2006). http://dx.doi.org/10.1016/j.chemosphere.2005.04.048. crossref(new window)

43.
Jung MJ, Jeong E, Jang JS, Lee YS. Preparation and characterization of electrospun TIO2-activated carbon complex fiber as photocatalyst. Carbon Lett, 11, 28 (2010). crossref(new window)

44.
Srivastava RK, Hutson N, Martin B, Princiotta F, Staudt J. Control of mercury emissions from coal-fired electric utility boilers. Environ Sci Technol, 40, 1385 (2006). http://dx.doi.org/10.1021/es062639u. crossref(new window)

45.
Carey TR, Richardson CF, Chang R, Meserole FB, Rostam-Abadi M, Chen S. Assessing sorbent injection mercury control effectiveness in flue gas streams. Environ Prog, 19, 167 (2000). http://dx.doi.org/10.1002/ep.670190309. crossref(new window)

46.
Morency J. Zeolite sorbent that effectively removes mercury from flue gases. Filtr Sep, 39, 24 (2002). http://dx.doi.org/10.1016/s0015-1882(02)80207-5. crossref(new window)

47.
Kim BJ, Bae KM, An KH, Park SJ. Elemental mercury adsorption behaviors of chemically modified activated carbons. Bull Korean Chem Soc, 32, 1321 (2011). http://dx.doi.org/10.5012/bkcs. 2011.32.4.1321. crossref(new window)

48.
Park SJ, Seo MK. Interface Science and Composites, Elsevier, New York (2011).

49.
Kim BJ, Bae KM, Park SJ. A study of the optimum pore structure for mercury vapor adsorption. Bull Korean Chem Soc, 32, 1507 (2011). http://dx.doi.org/10.5012/bkcs.2011.32.5.1507. crossref(new window)

50.
Kim BJ, Bae KM, Park SJ. Roles of metal/activated carbon hybridization on elemental mercury adsorption behaviors. J Nanosci Nanotechnol in press.

51.
Kim BJ, Bae KM, Park SJ. Elemental mercury vapor adsorption of copper-coated porous carbonaceous materials. J Colloid Interface Sci in press.

52.
Jones AP, Hoffmann JW, Smith DN, Feeley TJ, Murphy JT. DOE/NETL's phase II mercury control technology field testing program: preliminary economic analysis of activated carbon injection. Environ Sci Technol, 41, 1365 (2007). http://dx.doi.org/10.1021/es0617340. crossref(new window)

53.
Quick JC. Carbon dioxide emission factors for U.S. coal by origin and destination. Environ Sci Technol, 44, 2709 (2010). http://dx.doi.org/10.1021/es9027259. crossref(new window)

54.
Olson ES, Crocker CR, Benson SA, Pavlish JH, Holmes MJ. Surface compositions of carbon sorbents exposed to simulated lowrank coal flue gases. J Air Waste Manage Assoc, 55, 747 (2005). crossref(new window)

55.
Hassett DJ, Eylands KE. Mercury capture on coal combustion fly ash. Fuel, 78, 243 (1999). http://dx.doi.org/10.1016/s0016-2361(98)00150-1. crossref(new window)

56.
Serre SD, Silcox GD. Adsorption of elemental mercury on the residual carbon in coal fly ash. Ind Eng Chem Res, 39, 1723 (2000). http://dx.doi.org/10.1021/ie990680i. crossref(new window)

57.
Guo P, Guo X, Zheng CG. Computational insights into interactions between Hg species and ${\alpha}-Fe_2O_3$ (0 0 1). Fuel, 90, 1840 (2011). http://dx.doi.org/10.1016/j.fuel.2010.11.007. crossref(new window)

58.
Senior CL, Johnson SA. Impact of carbon-in-ash on mercury removal across particulate control devices in coal-fired power plants. Energy Fuels, 19, 859 (2005). http://dx.doi.org/10.1021/ef049861+. crossref(new window)

59.
Dunham GE, DeWall RA, Senior CL. Fixed-bed studies of the interactions between mercury and coal combustion fly ash. Fuel Process Technol, 82, 197 (2003). http://dx.doi.org/10.1016/s0378-3820(03)00070-5. crossref(new window)

60.
Abad-Valle P, Lopez-Anton MA, Diaz-Somoano M, Juan R, Rubio B, Garcia JR, Khainakov SA, Martínez-Tarazona MR. Influence of iron species present in fly ashes on mercury retention and oxidation. Fuel, 90, 2808 (2011). http://dx.doi.org/10.1016/j.fuel.2011.04.031. crossref(new window)

61.
Gao Y, Kulaots I, Chen X, Suuberg EM, Hurt RH, Veranth JM. The effect of solid fuel type and combustion conditions on residual carbon properties and fly ash quality. Proc Combust Inst, 29, 475 (2002). crossref(new window)

62.
Pedersen KH, Casanovas Melia M, Jensen AD, Dam-Johansen K. Post-treatment of fly ash by ozone in a fixed bed reactor. Energy Fuels, 23, 280 (2008). http://dx.doi.org/10.1021/ef800532x. crossref(new window)

63.
Kolker A, Senior CL, Quick JC. Mercury in coal and the impact of coal quality on mercury emissions from combustion systems. Appl Geochem, 21, 1821 (2006). http://dx.doi.org/10.1016/j.apgeochem.2006.08.001. crossref(new window)