JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Effect of graphite oxide on photodegradation behavior of poly(vinyl alcohol)/graphite oxide composite hydrogels
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 12, Issue 3,  2011, pp.138-142
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2011.12.3.138
 Title & Authors
Effect of graphite oxide on photodegradation behavior of poly(vinyl alcohol)/graphite oxide composite hydrogels
Moon, Young-E; Yun, Ju-Mi; Kim, Hyung-Il; Lee, Young-Seak;
  PDF(new window)
 Abstract
Poly(vinyl alcohol) (PVA) composites with various graphite oxide (GO) contents (0 to 10 wt%) were prepared by sonicating the mixture of PVA and GO, followed by crosslinking with glutaraldehyde. GO was pre-treated with oxyfluorination (
 Keywords
photochemical stability;graphite oxide;poly(vinyl alcohol);
 Language
English
 Cited by
1.
Synergetic improvement in electromagnetic interference shielding characteristics of polyaniline-coated graphite oxide/${\gamma}-Fe_2O_3/BaTiO_3$ nanocomposites,;;;

Journal of Industrial and Engineering Chemistry, 2013. vol.19. 2, pp.493-497 crossref(new window)
1.
Aligned Nanocomposite Membranes Containing Sulfonated Graphene Oxide with Superior Ionic Conductivity for Direct Methanol Fuel Cell Application, Industrial & Engineering Chemistry Research, 2015, 54, 28, 7028  crossref(new windwow)
2.
Preparation of PVP–PVA–exfoliated graphite cross-linked composite hydrogels for the incorporation of small tin nanoparticles, European Polymer Journal, 2013, 49, 9, 2654  crossref(new windwow)
3.
Comparative study of effect of corrosion on mild steel with waterborne polyurethane dispersion containing graphene oxide versus carbon black nanocomposites, Progress in Organic Coatings, 2015, 89, 199  crossref(new windwow)
4.
Accelerated weathering of fire-retarded wood–polypropylene composites, Composites Part A: Applied Science and Manufacturing, 2016, 81, 305  crossref(new windwow)
5.
The Preparation and Property of Carbon Foams from Carbon Black Embedded Pitch Using PU Template, Korean Chemical Engineering Research, 2016, 54, 2, 268  crossref(new windwow)
6.
Synergetic improvement in electromagnetic interference shielding characteristics of polyaniline-coated graphite oxide/γ-Fe2O3/BaTiO3 nanocomposites, Journal of Industrial and Engineering Chemistry, 2013, 19, 2, 493  crossref(new windwow)
7.
Improvement in transdermal drug delivery performance by graphite oxide/temperature-responsive hydrogel composites with micro heater, Materials Science and Engineering: C, 2012, 32, 6, 1564  crossref(new windwow)
 References
1.
Breuer O, Sundararaj U. Big returns from small fibers: a review of polymer/carbon nanotube composites. Polym Compos, 25, 630 (2004). http://dx.doi.org/10.1002/pc.20058. crossref(new window)

2.
Endruweit A, Johnson MS, Long AC. Curing of composite components by ultraviolet radiation: a review. Polym Compos, 27, 119 (2006). http://dx.doi.org/10.1002/pc.20166. crossref(new window)

3.
Kacperski M. Polymer nanocomposites. Part I. General characteristics, fillers and nanocomposites based on termosetting polymers. Polimery/Polymers, 47, 801 (2002).

4.
Sinha Ray S, Okamoto M. Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci, 28, 1539 (2003). http://dx.doi.org/10.1016/j.progpolymsci. 2003.08.002. crossref(new window)

5.
Pawlak A, Morawiec J, Piorkowska E, Galeski A. Nanocomposites of polypropylene and polyethylene with montmorillonite type clays. Polimery/Polymers, 49, 240 (2004).

6.
Kelar K, Jurkowski B, Mencel K. Montmorillonite separated from bentonite--ITS modification and possibility to USE in anionic polymerization of ${\varepsilon}-caprolactam$ for preparation of nanocomposites. Polimery/Polymers, 50, 449 (2005).

7.
Golebiewski J, Rozanski A, Galeski A. Study on the process of preparation of polypropylene nanocomposite with montmorillonite. Polimery/Polymers, 51, 374 (2006).

8.
Uhl FM, Wilkie CA. Polystyrene/graphite nanocomposites: effect on thermal stability. Polym Degradation Stab, 76, 111 (2002). http://dx.doi.org/10.1016/s0141-3910(02)00003-4. crossref(new window)

9.
Zhu J, Uhl FM, Morgan AB, Wilkie CA. Studies on the mechanism by which the formation of nanocomposites enhances thermal stability. Chem Mater, 13, 4649 (2001). http://dx.doi.org/10.1021/cm010451y. crossref(new window)

10.
Morlat-Therias S, Mailhot B, Gardette JL, Da Silva C, Haidar B, Vidal A. Photooxidation of ethylene-propylene-diene/montmorillonite nanocomposites. Polym Degradation Stab, 90, 78 (2005). http://dx.doi.org/10.1016/j.polymdegradstab.2005.01.040. crossref(new window)

11.
La Mantia FP, Dintcheva NT, Malatesta V, Pagani F. Improvement of photo-stability of LLDPE-based nanocomposites. Polym Degradation Stab, 91, 3208 (2006). http://dx.doi.org/10.1016/j.polymdegradstab.2006.07.014. crossref(new window)

12.
Sionkowska A, Skopinska J, Wisniewski M. Photochemical stability of collagen/poly (vinyl alcohol) blends. Polym Degradation Stab, 83, 117 (2004). http://dx.doi.org/10.1016/s0141-3910(03)00232-5. crossref(new window)

13.
Hassan C, Peppas N. Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Biopolymers . PVA Hydrogels, Anionic Polymerisation Nanocomposites Advances in Polymer Science, Vol. 153, Springer Berlin, Heidelberg, 37 (2000). http://dx.doi.org/10.1007/3-540-46414-x_2. crossref(new window)

14.
Park YS, Huh M, Kang SJ, Lee SH, An KH. Parametric study on synthesis of carbon nanotubes by the vertical spray pyrolysis method. Carbon Lett, 12, 102 (2011). http://dx.doi.org/10.5714/CL.2011.12.2.102. crossref(new window)

15.
Kwiecinska B, Petersen HI. Graphite, semi-graphite, natural coke, and natural char classification--ICCP system. Int J Coal Geol, 57, 99 (2004). http://dx.doi.org/10.1016/j.coal.2003.09.003. crossref(new window)

16.
Szabo T, Berkesi O, Forgo P, Josepovits K, Sanakis Y, Petridis D, Dekany I. Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem Mater, 18, 2740 (2006). http://dx.doi.org/10.1021/cm060258+. crossref(new window)

17.
Hua L, Kai W, Inoue Y. Synthesis and characterization of poly(□-caprolactone)-graphite oxide composites. J Appl Polym Sci, 106, 1880 (2007). http://dx.doi.org/10.1002/app.26503. crossref(new window)

18.
Uhl FM, Wilkie CA. Preparation of nanocomposites from styrene and modified graphite oxides. Polym Degradation Stab, 84, 215 (2004). http://dx.doi.org/10.1016/j.polymdegradstab.2003.10.014. crossref(new window)

19.
Wang WP, Pan CY. Preparation and characterization of poly(methyl methacrylate)-intercalated graphite oxide/poly(methyl methacrylate) nanocomposite. Polym Eng Sci, 44, 2335 (2004). http://dx.doi.org/10.1002/pen.20261. crossref(new window)

20.
Wan YZ, Wang YL, Wen TY. Effect of specific surface area and silver content on bacterial adsorption onto ACF(Ag). Carbon, 37, 351 (1999). http://dx.doi.org/10.1016/s0008-6223(99)90001-5. crossref(new window)

21.
Dutta K, De SK. Electrical conductivity and optical properties of polyaniline intercalated graphite oxide nanocomposites. J Nanosci Nanotechnol, 7, 2459 (2007). http://dx.doi.org/10.1166/jnn. 2007.429. crossref(new window)