JOURNAL BROWSE
Search
Advanced SearchSearch Tips
On eliminating electrochemical impedance signal noise using Li metal in a non-aqueous electrolyte for Li ion secondary batteries
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 12, Issue 3,  2011, pp.180-183
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2011.12.3.180
 Title & Authors
On eliminating electrochemical impedance signal noise using Li metal in a non-aqueous electrolyte for Li ion secondary batteries
Park, Chul-Wan;
  PDF(new window)
 Abstract
Li metal is accepted as a good counter electrode for electrochemical impedance spectroscopy (EIS) as the active material in Li-ion and Li-ion polymer batteries. We examined the existence of signal noise from a Li-metal counter quantitatively as a preliminary study. We suggest an electrochemical cell with one switchable electrode to obtain the exact impedance signal of active materials. To verify the effectiveness of the switchable electrode, EIS measurements of the solid electrolyte interphase (SEI) before severe intercalation to SFG6 graphite (at > ca. 0.25 V vs. Li/) were taken. As a result, the EIS spectra without the signal of Li metal were obtained and analyzed successfully for the following parameters i) conduction in the electrolyte, ii) the geometric resistance and constant phase element of the electrode (insensitive to the voltage), iii) the interfacial behavior of the SEI related to the transfer and residence throughout the near-surface (sensitive to voltage), and iv) the term reflecting the differential limiting capacitance of in the graphite lattice.
 Keywords
electrochemical impedance spectroscopy;non-aqueous electrolyte;Li ion secondary batteries;
 Language
English
 Cited by
1.
Preparation of well-controlled porous carbon nanofiber materials by varying the compatibility of polymer blends, Polymer International, 2014, 63, 8, 1471  crossref(new windwow)
2.
Electrochemical properties of PEO/PMMA blend-based polymer electrolytes using imidazolium salt-supported silica as a filler, Research on Chemical Intermediates, 2013, 39, 7, 3279  crossref(new windwow)
 References
1.
Croce F, Nobili F, Deptula A, Lada W, Tossici R, D'Epifanio A, Scrosati B, Marassi R. An electrochemical impedance spectroscopic study of the transport properties of $LiNi_{0.75}Co_{0.25}O_2$. Electrochem Commun, 1, 605 (1999). http://dx.doi.org/10.1016/s1388-2481(99)00123-x. crossref(new window)

2.
Springer TE, Zawodzinski TA, Wilson MS, Gottesfeld S. Characterization of polymer electrolyte fuel cells using AC impedance spectroscopy. J Electrochem Soc, 143, 587 (1996). http://dx.doi.org/10.1149/1.1836485. crossref(new window)

3.
Scrosati B, Croce F, Persi L. Impedance spectroscopy study of PEO-based nanocomposite polymer electrolytes. J Electrochem Soc, 147, 1718 (2000). http://dx.doi.org/10.1149/1.1393423. crossref(new window)

4.
Peled E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems--the solid electrolyte interphase model. J Electrochem Soc, 126, 2047 (1979). http://dx.doi. org/10.1149/1.2128859. crossref(new window)

5.
Belharouak I, Johnson C, Amine K. Synthesis and electrochemical analysis of vapor-deposited carbon-coated $4LiFePO_4$. Electrochem Commun, 7, 983 (2005). http://dx.doi.org/10.1016/j.elecom.2005.06.019. crossref(new window)

6.
Belharouak I, Amine K. $Li_2MTi_6O_{14}$ (M=Sr, Ba): new anodes for lithium-ion batteries. Electrochem Commun, 5, 435 (2003). http://dx.doi.org/10.1016/s1388-2481(03)00090-0. crossref(new window)

7.
Nagasubramanian G. Two- and three-electrode impedance studies on 18650 Li-ion cells. J Power Sources, 87, 226 (2000). http://dx.doi.org/10.1016/s0378-7753(99)00469-3. crossref(new window)

8.
Aurbach D, Zaban A, Schechter A, Ein-Eli Y, Zinigrad E, Markovsky B. The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries. J Electrochem Soc, 142, 2873 (1995). http://dx.doi.org/10.1149/1.2048658. crossref(new window)

9.
Kanamura K, Tamura H, Shiraishi S, Takehara ZI. XPS analysis of lithium surfaces following immersion in various solvents containing $LiBF_4$. J Electrochem Soc, 142, 340 (1995). http://dx.doi.org/10.1149/1.2044000. crossref(new window)

10.
Umeda M, Dokko K, Fujita Y, Mohamedi M, Uchida I, Selman JR. Electrochemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode. Part I. Graphitized carbon. Electrochim Acta, 47, 885 (2001). http://dx.doi.org/10.1016/s0013-4686(01)00799-x. crossref(new window)

11.
Dokko K, Fujita Y, Mohamedi M, Umeda M, Uchida I, Selman JR. Electrochemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode. Part II. Disordered carbon. Electrochim Acta, 47, 933 (2001). http://dx.doi.org/10.1016/s0013-4686(01)00809-x. crossref(new window)

12.
Dokko K, Mohamedi M, Umeda M, Uchida I. Kinetic study of Liion extraction and insertion at $LiMn_2O_4$ single particle electrodes using potential step and impedance methods. J Electrochem Soc, 150, A425 (2003). http://dx.doi.org/10.1149/1.1556596. crossref(new window)

13.
Park CW. $Li^+$ storage characteristics in non-graphitizable carbons prepared from methylnaphthalene-derived isotropic pitch and graphitizable carbons prepared from needle cokes [PhD Thesis], Seoul National University, Seoul, Korea (2000).

14.
Levi MD, Aurbach D. Diffusion coefficients of lithium ions during intercalation into graphite derived from the simultaneous measurements and modeling of electrochemical impedance and potentiostatic intermittent titration characteristics of thin graphite electrodes. J Phys Chem B, 101, 4641 (1997). http://dx.doi.org/10.1021/jp9701911. crossref(new window)

15.
Levi MD, Aurbach D. Frumkin intercalation isotherm--a tool for the description of lithium insertion into host materials: a review. Electrochim Acta, 45, 167 (1999). http://dx.doi.org/10.1016/s0013-4686(99)00202-9. crossref(new window)