JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A review: controlled synthesis of vertically aligned carbon nanotubes
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 12, Issue 4,  2011, pp.185-193
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2011.12.4.185
 Title & Authors
A review: controlled synthesis of vertically aligned carbon nanotubes
Hahm, Myung-Gwan; Hashim, Daniel P.; Vajtai, Robert; Ajayan, Pulickel M.;
  PDF(new window)
 Abstract
Carbon nanotubes (CNTs) have developed into one of the most competitively researched nano-materials of this decade because of their structural uniqueness and excellent physical properties such as nanoscale one dimensionality, high aspect ratio, high mechanical strength, thermal conductivity and excellent electrical conductivity. Mass production and structure control of CNTs are key factors for a feasible CNT industry. Water and ethanol vapor enhance the catalytic activity for massive growth of vertically aligned CNTs. A shower system for gas flow improves the growth of vertically aligned single walled CNTs (SWCNTs) by controlling the gas flow direction. Delivery of gases from the top of the nanotubes enables direct and precise supply of carbon source and water vapor to the catalysts. High quality vertically aligned SWCNTs synthesized using plasma enhance the chemical vapor deposition technique on substrate with suitable metal catalyst particles. This review provides an introduction to the concept of the growth of vertically aligned SWCNTs and covers advanced topics on the controlled synthesis of vertically aligned SWCNTs.
 Keywords
vertically aligned carbon nanotubes;chemical vapor deposition;Ethanol based CVD;Water assisted CVD;Plasma enhanced CVD;
 Language
English
 Cited by
1.
Carbon nanotubes-properties and applications: a review,;

Carbon letters, 2013. vol.14. 3, pp.131-144 crossref(new window)
1.
Carbon nanotubes-properties and applications: a review, Carbon letters, 2013, 14, 3, 131  crossref(new windwow)
2.
Synthesis and high electrochemical capacitance of N-doped microporous carbon/carbon nanotubes for supercapacitor, Journal of Electroanalytical Chemistry, 2012, 673, 58  crossref(new windwow)
 References
1.
Falvo MR, Clary GJ, Taylor Ii RM, Chi V, Brooks Jr FP, Washburn S, Superfine R. Bending and buckling of carbon nanotubes under large strain. Nature, 389, 582 (1997). http://dx.doi.org/10.1038/39282. crossref(new window)

2.
Hernandez E, Goze C, Bernier P, Rubio A. Elastic properties of single-wall nanotubes. Appl Phys A: Mater Sci Process, 68, 287 (1999). http://dx.doi.org/10.1007/s003390050890. crossref(new window)

3.
Iijima S, Brabec C, Maiti A, Bernholc J. Structural flexibility of carbon nanotubes. J Chem Phys, 104, 2089 (1996). http://dx.doi.org/10.1063/1.470966. crossref(new window)

4.
Krishnan A, Dujardin E, Ebbesen TW, Yianilos PN, Treacy MMJ. Young's modulus of single-walled nanotubes. Phys Rev B, 58, 14013 (1998). http://dx.doi.org/10.1103/PhysRevB.58.14013. crossref(new window)

5.
Lourie O, Cox DM, Wagner HD. Buckling and collapse of embedded carbon nanotubes. Phys Rev Lett, 81, 1638 (1998). http://dx.doi.org/10.1103/PhysRevLett.81.1638. crossref(new window)

6.
Lu JP. Elastic properties of carbon nanotubes and nanoropes. Phys Rev Lett, 79, 1297 (1997). http://dx.doi.org/10.1103/PhysRevLett.79.1297. crossref(new window)

7.
Nardelli MB, Yakobson BI, Bernholc J. Brittle and ductile behavior in carbon nanotubes. Phys Rev Lett, 81, 4656 (1998). http://dx.doi.org/10.1103/PhysRevLett.81.4656. crossref(new window)

8.
Qian D, Wagner GJ, Liu WK, Yu MF, Ruoff RS. Mechanics of carbon nanotubes. Appl Mech Rev, 55, 495 (2002). http://dx.doi.org/10.1115/1.1490129. crossref(new window)

9.
Reich S, Jantoljak H, Thomsen C. Shear strain in carbon nanotubes under hydrostatic pressure. Phys Rev B, 61, R13389 (2000). http://dx.doi.org/10.1103/PhysRevB.61.R13389. crossref(new window)

10.
Ruoff RS, Lorents DC. Mechanical and thermal properties of carbon nanotubes. Carbon, 33, 925 (1995). http://dx.doi.org/10.1016/0008-6223(95)00021-5. crossref(new window)

11.
Salvetat JP, Briggs GAD, Bonard JM, Bacsa RR, Kulik AJ, Stockli T, Burnham NA, Forro L. Elastic and shear moduli of singlewalled carbon nanotube ropes. Phys Rev Lett, 82, 944 (1999). http://dx.doi.org/10.1103/PhysRevLett.82.944. crossref(new window)

12.
Treacy MMJ, Ebbesen TW, Gibson JM. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature, 381, 678 (1996). http://dx.doi.org/10.1038/381678a0. crossref(new window)

13.
Wong EW, Sheehan PE, Lieber CM. Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science, 277, 1971 (1997). http://dx.doi.org/10.1126/science.277.5334.1971. crossref(new window)

14.
Yakobson BI, Brabec CJ, Bernholc J. Nanomechanics of carbon tubes: instabilities beyond linear response. Phys Rev Lett, 76, 2511 (1996). http://dx.doi.org/10.1103/PhysRevLett.76.2511. crossref(new window)

15.
Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science, 287, 637 (2000). http://dx.doi.org/10.1126/science.287.5453.637. crossref(new window)

16.
Benedict LX, Louie SG, Cohen ML. Heat capacity of carbon nanotubes. Solid State Commun, 100, 177 (1996). http://dx.doi.org/10.1016/0038-1098(96)00386-9. crossref(new window)

17.
Chiu HY, Deshpande VV, Postma HWC, Lau CN, Miko C, Forro L, Bockrath M. Ballistic phonon thermal transport in multiwalled carbon nanotubes. Phys Rev Lett, 95, 226101 (2005). http://dx.doi.org/10.1103/PhysRevLett.95.226101. crossref(new window)

18.
Fujii M, Zhang X, Xie H, Ago H, Takahashi K, Ikuta T, Abe H, Shimizu T. Measuring the thermal conductivity of a single carbon nanotube. Phys Rev Lett, 95, 065502 (2005). http://dx.doi.org/10.1103/PhysRevLett.95.065502. crossref(new window)

19.
Heremans J, Beetz Jr CP. Thermal conductivity and thermopower of vapor-grown graphite fibers. Phys Rev B, 32, 1981 (1985). http://dx.doi.org/10.1103/PhysRevB.32.1981. crossref(new window)

20.
Hone J. Phonons and thermal properties of carbon nanotubes. In: Dresselhaus M, Dresselhaus G, Avouris P, eds. Carbon Nanotubes. Topics in Applied Physics, Vol. 80, Springer Berlin, Heidelberg, Germany, 273 (2001). http://dx.doi.org/10.1007/3-540-39947-x_11. crossref(new window)

21.
Hone J, Llaguno MC, Biercuk MJ, Johnson AT, Batlogg B, Benes Z, Fischer JE. Thermal properties of carbon nanotubes and nanotube-based materials. Appl Phys A: Mater Sci Process, 74, 339 (2002). http://dx.doi.org/10.1007/s003390201277. crossref(new window)

22.
Hone J, Whitney M, Piskoti C, Zettl A. Thermal conductivity of single-walled carbon nanotubes. Phys Rev B, 59, R2514 (1999). http://dx.doi.org/10.1103/PhysRevB.59.R2514. crossref(new window)

23.
Huxtable ST, Cahill DG, Shenogin S, Xue L, Ozisik R, Barone P, Usrey M, Strano MS, Siddons G, Shim M, Keblinski P. Interfacial heat flow in carbon nanotube suspensions. Nature Mater, 2, 731 (2003). http://dx.doi.org/10.1038/nmat996. crossref(new window)

24.
Kim P, Shi L, Majumdar A, McEuen PL. Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett, 87, 215502 (2001). http://dx.doi.org/10.1103/PhysRevLett.87.215502. crossref(new window)

25.
Maniwa Y, Fujiwara R, Kira H, Tou H, Kataura H, Suzuki S, Achiba Y, Nishibori E, Takata M, Sakata M, Fujiwara A, Suematsu H. Thermal expansion of single-walled carbon nanotube (SWNT) bundles: X-ray diffraction studies. Phys Rev B, 64, 241402 (2001). http://dx.doi.org/10.1103/PhysRevB.64.241402. crossref(new window)

26.
Mingo N, Broido DA. Carbon nanotube ballistic thermal conductance and its limits. Phys Rev Lett, 95, 096105 (2005). http://dx.doi.org/10.1103/PhysRevLett.95.096105. crossref(new window)

27.
Pop E, Mann D, Wang Q, Goodson K, Dai H. Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett, 6, 96 (2006). http://dx.doi.org/10.1021/nl052145f. crossref(new window)

28.
Yang DJ, Zhang Q, Chen G, Yoon SF, Ahn J, Wang SG, Zhou Q, Wang Q, Li JQ. Thermal conductivity of multiwalled carbon nanotubes. Phys Rev B, 66, 165440 (2002). http://dx.doi.org/10.1103/PhysRevB.66.165440. crossref(new window)

29.
Avouris P, Chen Z, Perebeinos V. Carbon-based electronics. Nature Nanotechnol, 2, 605 (2007). http://dx.doi.org/10.1038/nnano.2007.300. crossref(new window)

30.
Blase X, Benedict LX, Shirley EL, Louie SG. Hybridization effects and metallicity in small radius carbon nanotubes. Phys Rev Lett, 72, 1878 (1994). http://dx.doi.org/10.1103/PhysRevLett.72.1878. crossref(new window)

31.
Bockrath M, Cobden DH, McEuen PL, Chopra NG, Zettl A, Thess A, Smalley RE. Single-electron transport in ropes of carbon nanotubes. Science, 275, 1922 (1997). http://dx.doi.org/10.1126/science.275.5308.1922. crossref(new window)

32.
Dai H, Wong EW, Lieber CM. Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes. Science, 272, 523 (1996). http://dx.doi.org/10.1126/science.272.5261.523. crossref(new window)

33.
Derycke V, Martel R, Appenzeller J, Avouris P. Carbon nanotube inter- and intramolecular logic gates. Nano Lett, 1, 453, (2001). http://dx.doi.org/10.1021/nl015606f. crossref(new window)

34.
Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T. Electrical conductivity of individual carbon nanotubes. Nature, 382, 54 (1996). http://dx.doi.org/10.1038/382054a0. crossref(new window)

35.
Hamada N, Sawada SI, Oshiyama A. New one-dimensional conductors: graphitic microtubules. Phys Rev Lett, 68, 1579 (1992). http://dx.doi.org/10.1103/PhysRevLett.68.1579. crossref(new window)

36.
Jishi RA, Dresselhaus MS, Dresselhaus G. Electron-phonon coupling and the electrical conductivity of fullerene nanotubules. Phys Rev B, 48, 11385 (1993). http://dx.doi.org/10.1103/PhysRevB.48.11385. crossref(new window)

37.
Lambin P, Fonseca A, Vigneron JP, Nagy JB, Lucas AA. Structural and electronic properties of bent carbon nanotubes. Chem Phys Lett, 245, 85 (1995). http://dx.doi.org/10.1016/0009-2614(95)00961-3. crossref(new window)

38.
Mintmire JW, Dunlap BI, White CT. Are fullerene tubules metallic? Phys Rev Lett, 68, 631 (1992). http://dx.doi.org/10.1103/Phys-RevLett.68.631. crossref(new window)

39.
Ouyang M, Huang JL, Cheung CL, Lieber CM. Energy gaps in "Metallic" single-walled carbon nanotubes. Science, 292, 702 (2001). http://dx.doi.org/10.1126/science.1058853. crossref(new window)

40.
Saito R, Dresselhaus G, Dresselhaus MS. Tunneling conductance of connected carbon nanotubes. Phys Rev B, 53, 2044 (1996). http://dx.doi.org/10.1103/PhysRevB.53.2044. crossref(new window)

41.
Saito R, Fujita M, Dresselhaus G, Dresselhaus MS. Electronic structure of chiral graphene tubules. Appl Phys Lett, 60, 2204 (1992). http://dx.doi.org/10.1063/1.107080. crossref(new window)

42.
Tang ZK, Zhang L, Wang N, Zhang XX, Wen GH, Li GD, Wang JN, Chan CT, Sheng P. Superconductivity in 4 angstrom singlewalled carbon nanotubes. Science, 292, 2462 (2001). http://dx.doi.org/10.1126/science.1060470. crossref(new window)

43.
Zhen Y, Postma HWC, Balents L, Dekker C. Carbon nanotube intramolecular junctions. Nature, 402, 273 (1999). http://dx.doi.org/10.1038/46241. crossref(new window)

44.
Ajayan PM, Terrones M, De la Guardia A, Huc V, Grobert N, Wei BQ, Lezec H, Ramanath G, Ebbesen TW. Nanotubes in a flash - Ignition and reconstruction. Science, 296, 705 (2002). http://dx.doi.org/10.1126/science.296.5568.705. crossref(new window)

45.
Bachtold A, Hadley P, Nakanishi T, Dekker C. Logic circuits with carbon nanotube transistors. Science, 294, 1317 (2001). http://dx.doi.org/10.1126/science.1065824. crossref(new window)

46.
Collins PG, Arnold MS, Avouris P. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science, 292, 706 (2001). http://dx.doi.org/10.1126/science.1058782. crossref(new window)

47.
Klinke C, Hannon JB, Afzali A, Avouris P. Field-effect transistors assembled from functionalized carbon nanotubes. Nano Lett, 6, 906 (2006). http://dx.doi.org/10.1021/nl052473f. crossref(new window)

48.
Koswatta SO, Perebeinos V, Lundstrom MS, Avouris P. Computational study of exciton generation in suspended carbon nanotube transistors. Nano Lett, 8, 1596 (2008). http://dx.doi.org/10.1021/nl0801226. crossref(new window)

49.
Lin YM, Appenzeller J, Knoch J, Chen Z, Avouris P. Low-frequency current fluctuations in individual semiconducting singlewall carbon nanotubes. Nano Lett, 6, 930 (2006). http://dx.doi.org/10.1021/nl052528d. crossref(new window)

50.
Tans SJ, Verschueren ARM, Dekker C. Room-temperature transistor based on a single carbon nanotube. Nature, 393, 49 (1998). http://dx.doi.org/10.1038/29954. crossref(new window)

51.
Baughman RH, Zakhidov AA, De Heer WA. Carbon nanotubes--the route toward applications. Science, 297, 787 (2002). http://dx.doi.org/10.1126/science.1060928. crossref(new window)

52.
Lee NS, Chung DS, Han IT, Kang JH, Choi YS, Kim HY, Park SH, Jin YW, Yi WK, Yun MJ, Jung JE, Lee CJ, You JH, Jo SH, Lee CG, Kim JM. Application of carbon nanotubes to field emission displays. Diamond Relat Mater, 10, 265 (2001). http://dx.doi.org/10.1016/s0925-9635(00)00478-7. crossref(new window)

53.
Saito Y, Uemura S, Hamaguchi K. Cathode ray tube lighting elements with carbon nanotube field emitters. Jpn J Appl Phys, 37, L346 (1998). http://dx.doi.org/10.1143/JJAP.37.L346. crossref(new window)

54.
Sugie H, Tanemura M, Filip V, Iwata K, Takahashi K, Okuyama F. Carbon nanotubes as electron source in an x-ray tube. Appl Phys Lett, 78, 2578 (2001). http://dx.doi.org/10.1063/1.1367278. crossref(new window)

55.
Yue GZ, Qiu Q, Gao B, Cheng Y, Zhang J, Shimoda H, Chang S, Lu JP, Zhou O. Generation of continuous and pulsed diagnostic imaging x-ray radiation using a carbon-nanotube-based fieldemission cathode. Appl Phys Lett, 81, 355 (2002). http://dx.doi.org/10.1063/1.1492305. crossref(new window)

56.
Che G, Lakshmi BB, Fisher ER, Martin CR. Carbon nanotubule membranes for electrochemical energy storage and production. Nature, 393, 346 (1998). http://dx.doi.org/10.1038/30694. crossref(new window)

57.
Endo M, Kim YA, Hayashi T, Nishimura K, Matusita T, Miyashita K, Dresselhaus MS. Vapor-grown carbon fibers (VGCFs)--basic properties and their battery applications. Carbon, 39, 1287 (2001). http://dx.doi.org/10.1016/s0008-6223(00)00295-5. crossref(new window)

58.
Gao B, Bower C, Lorentzen JD, Fleming L, Kleinhammes A, Tang XP, McNeil LE, Wu Y, Zhou O. Enhanced saturation lithium composition in ball-milled single-walled carbon nanotubes. Chem Phys Lett, 327, 69 (2000). http://dx.doi.org/10.1016/S0009-2614(00)00851-4. crossref(new window)

59.
Meunier V, Kephart J, Roland C, Bernholc J. Ab initio investigations of lithium diffusion in carbon nanotube systems. Phys Rev Lett, 88, 075506 (2002). http://dx.doi.org/10.1103/PhysRevLett.88.075506. crossref(new window)

60.
Chopra S, Pham A, Gaillard J, Parker A, Rao AM. Carbon-nanotube-based resonant-circuit sensor for ammonia. Appl Phys Lett, 80, 4632 (2002). http://dx.doi.org/10.1063/1.1486481. crossref(new window)

61.
Varghese OK, Kichambre PD, Gong D, Ong KG, Dickey EC, Grimes CA. Gas sensing characteristics of multi-wall carbon nanotubes. Sens Actuat B, 81, 32 (2001). http://dx.doi.org/10.1016/s0925-4005(01)00923-6. crossref(new window)

62.
Wong SS, Joselevich E, Woolley AT, Cheung CL, Lieber CM. Covalently functionalized nanotubes as nanometresized probes in chemistry and biology. Nature, 394, 52 (1998). http://dx.doi.org/10.1038/27873. crossref(new window)

63.
Wood JR, Wagner HD. Single-wall carbon nanotubes as molecular pressure sensors. Appl Phys Lett, 76, 2883 (2000). http://dx.doi.org/10.1063/1.126505. crossref(new window)

64.
Wood JR, Zhao Q, Frogley MD, Meurs ER, Prins AD, Peijs T, Dunstan DJ, Daniel Wagner H. Carbon nanotubes: from molecular to macroscopic sensors. Phys Rev B, 62, 7571 (2000). http://dx.doi.org/10.1103/PhysRevB.62.7571. crossref(new window)

65.
Bunger U, Zittel W. Hydrogen storage in carbon nanostructures-sill a long road from science to commerce? Appl Phys A: Mater Sci Process, 72, 147 (2001). http://dx.doi.org/10.1007/s003390100769. crossref(new window)

66.
Chambers A, Park C, Baker RTK, Rodriguez NM. Hydrogen storage in graphite nanofibers. J Phys Chem B, 102, 4253 (1998). http://dx.doi.org/10.1021/jp980114l. crossref(new window)

67.
Chen P, Wu X, Lin J, Tan KL. High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science, 285, 91 (1999). http://dx.doi.org/10.1126/science.285.5424.91. crossref(new window)

68.
Dai GP, Liu C, Liu M, Wang MZ, Cheng HM. Electrochemical hydrogen storage behavior of ropes of aligned single-walled carbon nanotubes. Nano Lett, 2, 503 (2002). http://dx.doi.org/10.1021/nl020290c. crossref(new window)

69.
Seung Mi L, Kay Hyeok A, Young Hee L, Seifert G, Frauenheim T. A hydrogen storage mechanism in single-walled carbon nanotubes. J Am Chem Soc, 123, 5059 (2001). http://dx.doi.org/10.1021/ja003751+. crossref(new window)

70.
Meregalli V, Parrinello M. Review of theoretical calculations of hydrogen storage in carbon-based materials. Appl Phys A: Mater Sci Process, 72, 143 (2001). http://dx.doi.org/10.1007/s003390100789. crossref(new window)

71.
Bajwa N, Li X, Ajayan PM, Vajtai R. Mechanisms for catalytic CVD growth of multiwalled carbon nanotubes. J Nanosci Nanotechnol, 8, 6054 (2008). http://dx.doi.org/10.1166/jnn.2008.SW02. crossref(new window)

72.
Halonen N, Kordas K, Toth G, Mustonen T, Maklin J, Vahakangas J, Ajayan PM, Vajtai R. Controlled CCVD synthesis of robust multiwalled carbon nanotube films. J Phys Chem C, 112, 6723 (2008). http://dx.doi.org/10.1021/jp7110617. crossref(new window)

73.
Vajtai R, Wei B, George T, Ajayan P. Chemical vapor deposition of organized architectures of carbon nanotubes for applications. In: Mansoori G, George T, Assoufid L, Zhang G, eds. Molecular Building Blocks for Nanotechnology. Topics in Applied Physics, Vol. 109, Springer Berlin, Heidelberg, Germany, 188 (2007). http://dx.doi.org/10.1007/978-0-387-39938-6_9. crossref(new window)

74.
Wei BQ, Vajtai R, Jung Y, Ward J, Zhang R, Ramanath G, Ajayan PM. Assembly of highly organized carbon nanotube architectures by chemical vapor deposition. Chem Mater, 15, 1598 (2003). http://dx.doi.org/10.1021/cm0202815. crossref(new window)

75.
Wei BQ, Ward JW, Vajtai R, Ajayan PM, Ma R, Ramanath G. Simultaneous growth of silicon carbide nanorods and carbon nanotubes by chemical vapor deposition. Chem Phys Lett, 354, 264 (2002). http://dx.doi.org/10.1016/s0009-2614(02)00108-2. crossref(new window)

76.
Wei BQ, Vajtai R, Ajayan PM. Sequence growth of carbon fibers and nanotube networks by CVD process [3]. Carbon, 41, 185 (2003). http://dx.doi.org/10.1016/s0008-6223(02)00307-x. crossref(new window)

77.
Zhang Z, Wei BQ, Ajayan PM. Self-assembled patterns of iron oxide nanoparticles by hydrothermal chemical-vapor deposition. Appl Phys Lett, 79, 4207 (2001). http://dx.doi.org/10.1063/1.1426256. crossref(new window)

78.
Terrones M. Science and technology of the twenty-first century: synthesis, properties, and applications of carbon nanotubes. Ann Rev Mater Res, 33, 419 (2003). http://dx.doi.org/10.1146/annurev.matsci.33.012802.100255. crossref(new window)

79.
Dresselhaus MS, Dresselhaus G, Avouris P. Carbon Nanotubes: Synthesis, Structure, Properties, and Applications. Topics in Applied Physics, Vol. 80, Springer, New York (2001).

80.
Ren ZF, Huang ZP. Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science, 282, 1105 (1998). http://dx.doi.org/10.1126/science.282.5391.1105. crossref(new window)

81.
Hata K, Futaba DN, Mizuno K, Namai T, Yumura M, Iijima S. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science, 306, 1362 (2004). http://dx.doi.org/10.1126/science.1104962. crossref(new window)

82.
Hahm MG, Kwon YK, Lee E, Ahn CW, Jung YJ. Diameter selective growth of vertically aligned single walled carbon nanotubes and study on their growth mechanism. J Phys Chem C, 112, 17143 (2008). http://dx.doi.org/10.1021/jp8073877. crossref(new window)

83.
Maruyama S, Kojima R, Miyauchi Y, Chiashi S, Kohno M. Lowtemperature synthesis of high-purity single-walled carbon nanotubes from alcohol. Chem Phys Lett, 360, 229 (2002). http://dx.doi.org/10.1016/s0009-2614(02)00838-2. crossref(new window)

84.
Jorio A, Dresselhaus G, Dresselhaus MS. Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties, and Applications. Topics in Applied Physics, Vol. 111, Springer, New York (2008).

85.
Yasuda S, Futaba DN, Yamada T, Satou J, Shibuya A, Takai H, Arakawa K, Yumura M, Hata K. Improved and large area singlewalled carbon nanotube forest growth by controlling the gas flow direction. ACS Nano, 3, 4164 (2009). http://dx.doi.org/10.1021/nn9007302. crossref(new window)

86.
Noda S, Hasegawa K, Sugime H, Kakehi K, Zhang Z, Maruyama S, Yamaguchi Y. Millimeter-thick single-walled carbon nanotube forests: hidden role of catalyst support. Jpn J Appl Phys, 46, L399 (2007). http://dx.doi.org/10.1143/jjap.46.l399. crossref(new window)

87.
Ajayan PM, Lambert JM, Bernier P, Barbedette L, Colliex C, Planeix JM. Growth morphologies during cobalt-catalyzed singleshell carbon nanotube synthesis. Chem Phys Lett, 215, 509 (1993). http://dx.doi.org/10.1016/0009-2614(93)85711-V. crossref(new window)

88.
Huang H, Kajiura H, Tsutsui S, Hirano Y, Miyakoshi M, Yamada A, Ata M. Large-scale rooted growth of aligned super bundles of single-walled carbon nanotubes using a directed arc plasma method. Chem Phys Lett, 343, 7 (2001). http://dx.doi.org/10.1016/s0009-2614(01)00631-5. crossref(new window)

89.
Journet C, Maser WK, Bernier P, Loiseau A, Lamy de la Chapelle M, Lefrant S, Deniard P, Lee R, Fischer JE. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature, 388, 756 (1997). http://dx.doi.org/10.1038/41972. crossref(new window)

90.
Lambert JM, Ajayan PM, Bernier P, Planeix JM, Brotons V, Coq B, Castaing J. Improving conditions towards isolating single-shell carbon nanotubes. Chem Phys Lett, 226, 364 (1994). http://dx.doi.org/10.1016/0009-2614(94)00739-X. crossref(new window)

91.
Saito Y, Tani Y, Miyagawa N, Mitsushima K, Kasuya A, Nishina Y. High yield of single-wall carbon nanotubes by arc discharge using Rh-Pt mixed catalysts. Chem Phys Lett, 294, 593 (1998). http://dx.doi.org/10.1016/S0009-2614(98)00921-X. crossref(new window)

92.
Subramoney S. Radial single-layer nanotubes. Nature, 366, 637 (1993). http://dx.doi.org/10.1038/366637a0. crossref(new window)

93.
Guo T, Nikolaev P, Rinzler AG, Tomanek D, Colbert DT, Smalley RE. Self-assembly of tubular fullerenes. J Phys Chem, 99, 10694 (1995). http://dx.doi.org/10.1021/j100027a002. crossref(new window)

94.
Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tomanek D, Fischer JE, Smalley RE. Crystalline ropes of metallic carbon nanotubes. Science, 273, 483 (1996). http://dx.doi.org/10.1126/science.273.5274.483. crossref(new window)

95.
Chhowalla M, Teo KBK, Ducati C, Rupesinghe NL, Amaratunga GAJ, Ferrari AC, Roy D, Robertson J, Milne WI. Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. J Appl Phys, 90, 5308 (2001). http://dx.doi.org/10.1063/1.1410322. crossref(new window)

96.
Zhang G, Mann D, Zhang L, Javey A, Li Y, Yenilmez E, Wang Q, McVittie JP, Nishi Y, Gibbons J, Dai H. Ultra-high-yield growth of vertical single-walled carbon nanotubes: hidden roles of hydrogen and oxygen. Proc Natl Acad Sci USA, 102, 16141 (2005). http://dx.doi.org/10.1073/pnas.0507064102. crossref(new window)

97.
Zhong G, Iwasaki T, Robertson J, Kawarada H. Growth kinetics of 0.5 cm vertically aligned single-walled carbon nanotubes. J Phys Chem B, 111, 1907 (2007). http://dx.doi.org/10.1021/jp067776s. crossref(new window)

98.
Qu L, Du F, Dai L. Preferential syntheses of semiconducting vertically aligned single-walled carbon nanotubes for direct use in FETs. Nano Lett, 8, 2682 (2008). http://dx.doi.org/10.1021/nl800967n. crossref(new window)

99.
Iwasaki T, Zhong G, Aikawa T, Yoshida T, Kawarada H. Direct evidence for root growth of vertically aligned single-walled carbon nanotubes by microwave plasma chemical vapor deposition. J Phys Chem B, 109, 19556 (2005). http://dx.doi.org/10.1021/jp054465t. crossref(new window)