JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Carbon nanomaterials in organic photovoltaic cells
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 12, Issue 4,  2011, pp.194-206
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2011.12.4.194
 Title & Authors
Carbon nanomaterials in organic photovoltaic cells
Kim, Tae-Hoon; Yang, Seung-Jae; Park, Chong-Rae;
  PDF(new window)
 Abstract
Carbon nanomaterials in organic photovoltaic (OPV) cells have attracted a great deal of interest for the development of high-efficiency, flexible, and low-cost solar cells. Due to the complicated structure of OPV devices, the electrical properties and dispersion behavior of the carbon nanomaterials should be controlled carefully in order for them to be used as materials in OPV devices. In this paper, a fundamental theory of the electrical properties and dispersion behavior of carbon nanomaterials is reviewed. Based on this review, a state-of-the-art OPV device composed of carbon nanomaterials, along with issues related to such devices, are discussed.
 Keywords
organic photovoltaic;fullerene;carbon nanotubes;graphene;conjugated polymer;
 Language
English
 Cited by
1.
Nanocomposite-Based Bulk Heterojunction Hybrid Solar Cells, Journal of Nanomaterials, 2014, 2014, 1  crossref(new windwow)
2.
Graphene Quantum Rings Doped PEDOT:PSS Based Composite Layer for Efficient Performance of Optoelectronic Devices, The Journal of Physical Chemistry C, 2015, 119, 34, 19619  crossref(new windwow)
3.
Effect of fluorine–oxygen mixed gas treated graphite fibers on electrochemical behaviors of platinum–ruthenium nanoparticles toward methanol oxidation, Journal of Fluorine Chemistry, 2012, 144, 124  crossref(new windwow)
4.
A review on carbon nanotube/polymer composites for organic solar cells, International Journal of Energy Research, 2014, 38, 13, 1635  crossref(new windwow)
 References
1.
Avouris P, Chen Z, Perebeinos V. Carbon-based electronics. Nature Nanotechnol, 2, 605 (2007). http://dx.doi.org/10.1038/nnano.2007.300. crossref(new window)

2.
Durkop T, Getty SA, Cobas E, Fuhrer MS. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett, 4, 35 (2004). http://dx.doi.org/10.1021/nl034841q. crossref(new window)

3.
Gunes S, Neugebauer H, Sariciftci NS. Conjugated polymer-based organic solar cells. Chem Rev, 107, 1324 (2007). http://dx.doi.org/10.1021/cr050149z. crossref(new window)

4.
Dennler G, Scharber MC, Brabec CJ. Polymer-fullerene bulk-heterojunction solar cells. Adv Mater, 21, 1323 (2009). http://dx.doi.org/10.1002/adma.200801283. crossref(new window)

5.
Chen HY, Hou J, Zhang S, Liang Y, Yang G, Yang Y, Yu L, Wu Y, Li G. Polymer solar cells with enhanced open-circuit voltage and efficiency. Nature Photon, 3, 649 (2009). http://dx.doi.org/10.1038/nphoton.2009.192. crossref(new window)

6.
Gregg BA. Excitonic solar cells. J Phys Chem B, 107, 4688 (2003). http://dx.doi.org/10.1021/jp022507x. crossref(new window)

7.
Tang CW. Two-layer organic photovoltaic cell. Appl Phys Lett, 48, 183 (1986). http://dx.doi.org/10.1063/1.96937. crossref(new window)

8.
Mayer AC, Scully SR, Hardin BE, Rowell MW, McGehee MD. Polymer-based solar cells. Mater Today, 10, 28 (2007). http://dx.doi.org/10.1016/s1369-7021(07)70276-6. crossref(new window)

9.
Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donoracceptor heterojunctions. Science, 270, 1789 (1995). http://dx.doi.org/10.1126/science.270.5243.1789. crossref(new window)

10.
Park SH, Roy A, Beaupre S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Lee K, Heeger AJ. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nature Photon, 3, 297 (2009). http://dx.doi.org/10.1038/nphoton.2009.69. crossref(new window)

11.
Coakley KM, Liu Y, McGehee MD, Frindell KL, Stucky GD. Infiltrating semiconducting polymers into self-assembled mesoporous titania films for photovoltaic applications. Adv Funct Mater, 13, 301 (2003). http://dx.doi.org/10.1002/adfm.200304361. crossref(new window)

12.
Beek WJE, Wienk MM, Janssen RAJ. Hybrid solar cells from regioregular polythiophene and ZnO nanoparticles. Adv Funct Mater, 16, 1112 (2006). http://dx.doi.org/10.1002/adfm.200500573. crossref(new window)

13.
Chang CH, Huang TK, Lin YT, Lin YY, Chen CW, Chu TH, Su WF. Improved charge separation and transport efficiency in poly(3- hexylthiophene)-TiO2 nanorod bulk heterojunction solar cells. J Mater Chem, 18, 2201 (2008). http://dx.doi.org/10.1039/b800071a. crossref(new window)

14.
Jeong HK, Jin MH, So KP, Lim SC, Lee YH. Tailoring the characteristics of graphite oxides by different oxidation times. J Phys D: Appl Phys, 42, 065418 (2009). http://dx.doi.org/10.1088/0022-3727/42/6/065418. crossref(new window)

15.
He Y, Chen HY, Hou J, Li Y. Indene - C60 bisadduct: a new acceptor for high-performance polymer solar cells. J Am Chem Soc, 132, 1377 (2010). http://dx.doi.org/10.1021/ja908602j. crossref(new window)

16.
Cravino A. Origin of the open circuit voltage of donor-acceptor solar cells: do polaronic energy levels play a role? Appl Phys Lett, 91, 243502 (2007). http://dx.doi.org/10.1063/1.2817930. crossref(new window)

17.
Kymakis E, Servati P, Tzanetakis P, Koudoumas E, Kornilios N, Rompogiannakis I, Franghiadakis Y, Amaratunga GAJ. Effective mobility and photocurrent in carbon nanotube-polymer composite photovoltaic cells. Nanotechnology, 18, 435702 (2007). http://dx.doi.org/10.1088/0957-4484/18/43/435702. crossref(new window)

18.
Mihailetchi VD, Wildeman J, Blom PWM. Space-charge limited photocurrent. Phys Rev Lett, 94, 126602 (2005). http://dx.doi.org/10.1103/PhysRevLett.94.126602. crossref(new window)

19.
Geens W, Shaheen SE, Wessling B, Brabec CJ, Poortmans J, Sariciftci NS. Dependence of field-effect hole mobility of PPV-based polymer films on the spin-casting solvent. Org Electron, 3, 105 (2002). http://dx.doi.org/10.1016/s1566-1199(02)00039-3. crossref(new window)

20.
Bao Z, Dodabalapur A, Lovinger AJ. Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility. Appl Phys Lett, 69, 4108 (1996). http://dx.doi.org/10.1063/1.117834. crossref(new window)

21.
Sirringhaus H, Tessler N, Friend RH. Integrated optoelectronic devices based on conjugated polymers. Science, 280, 1741 (1998). http://dx.doi.org/10.1126/science.280.5370.1741. crossref(new window)

22.
Yang CM, Liao HH, Horng SF, Meng HF, Tseng SR, Hsu CS. Electron mobility and electroluminescence efficiency of blue conjugated polymers. Synth Met, 158, 25 (2008). http://dx.doi.org/10.1016/j.synthmet.2007.11.006. crossref(new window)

23.
Chirvase D, Chiguvare Z, Knipper M, Parisi J, Dyakonov V, Hummelen JC. Temperature dependent characteristics of poly(3 hexylthiophene)-fullerene based heterojunction organic solar cells. J Appl Phys, 93, 3376 (2003). http://dx.doi.org/10.1063/1.1545162. crossref(new window)

24.
Kooistra FB, Knol J, Kastenberg F, Popescu LM, Verhees WJH, Kroon JM, Hummelen JC. Increasing the open circuit voltage of bulk-heterojunction solar cells by raising the LUMO level of the acceptor. Org Lett, 9, 551 (2007). http://dx.doi.org/10.1021/ol062666p. crossref(new window)

25.
Kooistra FB, Mihailetchi VD, Popescu LM, Kronholm D, Blom PWM, Hummelen JC. New C84 derivative and its application in a bulk heterojunction solar cell. Chem Mater, 18, 3068 (2006). http://dx.doi.org/10.1021/cm052783z. crossref(new window)

26.
Frankevich E, Maruyama Y, Ogata H. Mobility of charge carriers in vapor-phase grown C60 single crystal. Chem Phys Lett, 214, 39 (1993). http://dx.doi.org/10.1016/0009-2614(93)85452-T. crossref(new window)

27.
Haddon RC, Perel AS, Morris RC, Palstra TTM, Hebard AF, Fleming RM. C60 thin film transistors. Appl Phys Lett, 67, 121 (1995). http://dx.doi.org/10.1063/1.115503. crossref(new window)

28.
Wobkenberg PH, Bradley DDC, Kronholm D, Hummelen JC, de Leeuw DM, Colle M, Anthopoulos TD. High mobility n-channel organic field-effect transistors based on soluble C60 and C70 fullerene derivatives. Synth Met, 158, 468 (2008). http://dx.doi.org/10.1016/j.synthmet.2008.03.016. crossref(new window)

29.
Singh TB, Marjanovic N, Stadler P, Auinger M, Matt GJ, Gunes S, Sariciftci NS, Schwodiauer R, Bauer S. Fabrication and characterization of solution-processed methanofullerene- based organic field-effect transistors. J Appl Phys, 97, 083714 (2005). http://dx.doi.org/10.1063/1.1895466. crossref(new window)

30.
Mihailetchi VD, Van Duren JKJ, Blom PWM, Hummelen JC, Janssen RAJ, Kroon JM, Rispens MT, Verhees WJH, Wienk MM. Electron transport in a methanofullerene. Adv Funct Mater, 13, 43 (2003). http://dx.doi.org/10.1002/adfm.200390004. crossref(new window)

31.
Wienk MM, Kroon JM, Verhees WJH, Knol J, Hummelen JC, Van Hal PA, Janssen RAJ. Efficient methano[70]fullerene/MDMOPPV bulk heterojunction photovoltaic cells. Angew Chem Int Ed, 42, 3371 (2003). http://dx.doi.org/10.1002/anie.200351647. crossref(new window)

32.
Li C, Chen Y, Wang Y, Iqbal Z, Chhowalla M, Mitra S. A fullerenesingle wall carbon nanotube complex for polymer bulk heterojunction photovoltaic cells. J Mater Chem, 17, 2406 (2007). http://dx.doi.org/10.1039/b618518e. crossref(new window)

33.
Tenent RC, Barnes TM, Bergeson JD, Ferguson AJ, To B, Gedvilas LM, Heben MJ, Blackburn JL. UItrasmooth, large-area, highuniformity, conductive transparent single-walled-carbon-nanotube films for photovoltaics produced by ultrasonic spraying. Adv Mater, 21, 3210 (2009). http://dx.doi.org/10.1002/adma.200803551. crossref(new window)

34.
Zou J, Chen H, Chunder A, Yu Y, Huo Q, Zhai L. Preparation of a superhydrophobic and conductive nanocomposite coating from a carbon-nanotube-conjugated block copolymer dispersion. Adv Mater, 20, 3337 (2008). http://dx.doi.org/10.1002/adma.200703094. crossref(new window)

35.
Rispens MT, Meetsma A, Rittberger R, Brabec CJ, Sariciftci NS, Hummelen JC. Influence of the solvent on the crystal structure of PCBM and the efficiency of MDMO-PPV:PCBM 'plastic' solar cells. Chem Commun, 9, 2116 (2003). http://dx.doi.org/10.1039/B305988J. crossref(new window)

36.
Shaheen SE, Brabec CJ, Sariciftci NS, Padinger F, Fromherz T, Hummelen JC. 2.5% efficient organic plastic solar cells. Appl Phys Lett, 78, 841 (2001). http://dx.doi.org/10.1063/1.1345834. crossref(new window)

37.
Brabec CJ, Cravino A, Meissner D, Serdar Sariciftci N, Fromherz T, Rispens MT, Sanchez L, Hummelen JC. Origin of the open circuit voltage of plastic solar cells. Adv Funct Mater, 11, 374 (2001). http://dx.doi.org/10.1002/1616-3028(200110)11:5<374::aidadfm374>3.0.co;2-w. crossref(new window)

38.
Ma W, Yang C, Gong X, Lee K, Heeger AJ. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv Funct Mater, 15, 1617 (2005). http://dx.doi.org/10.1002/adfm.200500211. crossref(new window)

39.
Dante M, Peet J, Nguyen TQ. Nanoscale charge transport and internal structure of bulk heterojunction conjugated polymer/fullerene solar cells by scanning probe microscopy. J Phys Chem C, 112, 7241 (2008). http://dx.doi.org/10.1021/jp712086q. crossref(new window)

40.
Kim K, Liu J, Namboothiry MAG, Carroll DL. Roles of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaics. Appl Phys Lett, 90, 163511 (2007). http://dx.doi.org/10.1063/1.2730756. crossref(new window)

41.
Mihailetchi VD, Koster LJA, Blom PWM, Melzer C, De Boer B, Van Duren JKJ, Janssen RAJ. Compositional dependence of the performance of poly(p-phenylene vinylene):Methanofullerene bulk-heterojunction solar cells. Adv Funct Mater, 15, 795 (2005). http://dx.doi.org/10.1002/adfm.200400345. crossref(new window)

42.
Savenije TJ, Kroeze JE, Wienk MM, Kroon JM, Warman JM. Mobility and decay kinetics of charge carriers in photoexcited PCBM/PPV blends. Phys Rev B, 69, 155205 (2004). http://dx.doi.org/10.1103/PhysRevB.69.155205. crossref(new window)

43.
Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Mater, 4, 864 (2005). http://dx.doi.org/10.1038/nmat1500. crossref(new window)

44.
Mihailetchi VD, Xie H, De Boer B, Koster LJA, Blom PWM. Charge transport and photocurrent generation in poly(3-hexylthiophene): methanofullerene bulk-heterojunction solar cells. Adv Funct Mater, 16, 699 (2006). http://dx.doi.org/10.1002/adfm.200500420. crossref(new window)

45.
Moule AJ, Meerholz K. Morphology control in solution-processed bulk-heterojunction solar cell mixtures. Adv Funct Mater, 19, 3028 (2009). http://dx.doi.org/10.1002/adfm.200900775. crossref(new window)

46.
Wei Q, Nishizawa T, Tajima K, Hashimoto K. Self-organized buffer layers in organic solar cells. Adv Mater, 20, 2211 (2008). http://dx.doi.org/10.1002/adma.200792876. crossref(new window)

47.
Cravino A, Sariciftci NS. Organic electronics: molecules as bipolar conductors. Nat Mater, 2, 360 (2003). http://dx.doi.org/10.1038/nmat915. crossref(new window)

48.
Cravino A, Sariciftci NS. Double-cable polymers for fullerene based organic optoelectronic applications. J Mater Chem, 12, 1931 (2002). http://dx.doi.org/10.1039/b201558g. crossref(new window)

49.
Zhao GJ, He YJ, Li Y. 6.5% efficiency of polymer solar cells based on poly(3-hexylthiophene) and indene-C60 bisadduct by device optimization. Adv Mater, 22, 4355 (2010). http://dx.doi.org/10.1002/adma.201001339. crossref(new window)

50.
Konya Z, Vesselenyi I, Niesz K, Kukovecz A, Demortier A, Fonseca A, Delhalle J, Mekhalif Z, Nagy JB, Koos AA, Osvath Z, Kocsonya A, Biro LP, Kiricsi I. Large scale production of short functionalized carbon nanotubes. Chem Phys Lett, 360, 429 (2002). http://dx.doi.org/10.1016/s0009-2614(02)00900-4. crossref(new window)

51.
Pierard N, Fonseca A, Konya Z, Willems I, Van Tendeloo G, Nagy JB. Production of short carbon nanotubes with open tips by ball milling. Chem Phys Lett, 335, 1 (2001). http://dx.doi.org/10.1016/s0009-2614(01)00004-5. crossref(new window)

52.
Khabashesku VN, Billups WE, Margrave JL. Fluorination of single-wall carbon nanotubes and subsequent derivatization reactions. Acc Chem Res, 35, 1087 (2002). http://dx.doi.org/10.1021/ar020146y. crossref(new window)

53.
Lim JK, Yun WS, Yoon MH, Lee SK, Kim CH, Kim K, Kim SK. Selective thiolation of single-walled carbon nanotubes. Synth Met, 139, 521 (2003). http://dx.doi.org/10.1016/s0379-6779(03)00337-0. crossref(new window)

54.
Ma PC, Mo SY, Tang BZ, Kim JK. Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites. Carbon, 48, 1824 (2010). http://dx.doi.org/10.1016/j.carbon.2010.01.028. crossref(new window)

55.
Yan D, Wang F, Zhao Y, Liu J, Wang J, Zhang L, Park KC, Endo M. Production of a high dispersion of silver nanoparticles on surface-functionalized multi-walled carbon nanotubes using an electrostatic technique. Mater Lett, 63, 171 (2009). http://dx.doi.org/10.1016/j.matlet.2008.09.018. crossref(new window)

56.
Yang SJ, Choi JY, Chae HK, Cho JH, Nahm KS, Park CR. Preparation and enhanced hydrostability and hydrogen storage capacity of $CNT{\copyright}MOF-5$ hybrid composite. Chem Mater, 21, 1893 (2009). http://dx.doi.org/10.1021/cm803502y. crossref(new window)

57.
Hueso JL, Espinos JP, Caballero A, Cotrino J, Gonzalez-Elipe AR. XPS investigation of the reaction of carbon with NO, O2, N2 and H2O plasmas. Carbon, 45, 89 (2007). http://dx.doi.org/10.1016/j.carbon.2006.07.021. crossref(new window)

58.
Tusek L, Nitschke M, Werner C, Stana-Kleinschek K, Ribitsch V. Surface characterisation of NH3 plasma treated polyamide 6 foils. Colloids Surf Physicochem Eng Aspects, 195, 81 (2001). http://dx.doi.org/10.1016/s0927-7757(01)00831-7. crossref(new window)

59.
Kim SW, Kim T, Kim YS, Choi HS, Lim HJ, Yang SJ, Park CR. Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers. Carbon, 50, 3 (2012). http://dx.doi.org/10.1016/j.carbon.2011.08.011. crossref(new window)

60.
O'Connell MJ, Bachilo SH, Huffman CB, Moore VC, Strano MS, Haroz EH, Rialon KL, Boul PJ, Noon WH, Kittrell C, Ma J, Hauge RH, Weisman RB, Smalley RE. Band gap fluorescence from individual single-walled carbon nanotubes. Science, 297, 593 (2002). http://dx.doi.org/10.1126/science.1072631. crossref(new window)

61.
Moore VC, Strano MS, Haroz EH, Hauge RH, Smalley RE, Schmidt J, Talmon Y. Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett, 3, 1379 (2003). http://dx.doi.org/10.1021/nl034524j. crossref(new window)

62.
Saini V, Li Z, Bourdo S, Dervishi E, Xu Y, Ma X, Kunets VP, Salamo GJ, Viswanathan T, Biris AR, Saini D, Biris AS. Electrical, optical, and morphological properties of p3ht-mwnt nanocomposites prepared by In situ polymerization. J Phys Chem C, 113, 8023 (2009). http://dx.doi.org/10.1021/jp809479a. crossref(new window)

63.
Sui XM, Giordani S, Prato M, Wagner HD. Effect of carbon nanotube surface modification on dispersion and structural properties of electrospun fibers. Appl Phys Lett, 95, 233113 (2009). http://dx.doi.org/10.1063/1.3272012. crossref(new window)

64.
Kubota K, Sano M, Masuko T. Microwave irradiation for chemical modification of carbon nanotubes for better dispersion. Jpn J Appl Phys, 44, 465 (2005). http://dx.doi.org/10.1143/jjap.44.465. crossref(new window)

65.
Yang K, Gu M. The effects of triethylenetetramine grafting of multi-walled carbon nanotubes on its dispersion, filler-matrix interfacial interaction and the thermal properties of epoxy nanocomposites. Polym Eng Sci, 49, 2158 (2009). http://dx.doi.org/10.1002/pen.21461. crossref(new window)

66.
Zhao W, Liu YT, Feng QP, Xie XM, Wang XH, Ye XY. Dispersion and noncovalent modification of multiwalled carbon nanotubes by various polystyrene-based polymers. J Appl Polym Sci, 109, 3525 (2008). http://dx.doi.org/10.1002/app.28453. crossref(new window)

67.
Yan Y, Cui J, Potschke P, Voit B. Dispersion of pristine singlewalled carbon nanotubes using pyrene-capped polystyrene and its application for preparation of polystyrene matrix composites. Carbon, 48, 2603 (2010). http://dx.doi.org/10.1016/j.carbon.2010.03.065. crossref(new window)

68.
Zou J, Liu L, Chen H, Khondaker SI, McCullough RD, Huo Q, Zhai L. Dispersion of pristine carbon nanotubes using conjugated block copolymers. Adv Mater, 20, 2055 (2008). http://dx.doi.org/10.1002/adma.200701995. crossref(new window)

69.
Zhang Z, Che Y, Smaldone RA, Xu M, Bunes BR, Moore JS, Zang L. Reversible dispersion and release of carbon nanotubes using foldable oligomers. J Am Chem Soc, 132, 14113 (2010). http://dx.doi.org/10.1021/ja104105n. crossref(new window)

70.
Lovell CS, Wise KE, Kim JW, Lillehei PT, Harrison JS, Park C. Thermodynamic approach to enhanced dispersion and physical properties in a carbon nanotube/polypeptide nanocomposite. Polymer, 50, 1925 (2009). http://dx.doi.org/10.1016/j.polymer.2009.02.016. crossref(new window)

71.
Sun G, Chen G, Liu J, Yang J, Xie J, Liu Z, Li R, Li X. A facile gemini surfactant-improved dispersion of carbon nanotubes in polystyrene. Polymer, 50, 5787 (2009). http://dx.doi.org/10.1016/j.polymer.2009.10.007. crossref(new window)

72.
Hermant MC, Klumperman B, Kyrylyuk AV, Van Der Schoot P, Koning CE. Lowering the percolation threshold of single-walled carbon nanotubes using polystyrene/poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) blends. Soft Matter, 5, 878 (2009). http://dx.doi.org/10.1039/b814976c. crossref(new window)

73.
Arnold MS, Stupp SI, Hersam MC. Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett, 5, 713 (2005). http://dx.doi.org/10.1021/nl050133o. crossref(new window)

74.
Yu B, Hou PX, Li F, Liu B, Liu C, Cheng HM. Selective removal of metallic single-walled carbon nanotubes by combined in situ and post-synthesis oxidation. Carbon, 48, 2941 (2010). http://dx.doi.org/10.1016/j.carbon.2010.04.032. crossref(new window)

75.
Cordeiro CE, Delfino A, Frederico T. Theoretical study of work function of conducting single-walled carbon nanotubes by a nonrelativistic field theory approach. Carbon, 47, 690 (2009). http://dx.doi.org/10.1016/j.carbon.2008.11.004. crossref(new window)

76.
Ago H. Work functions and surface functional groups of multiwall carbon nanotubes. J Phys Chem B, 103, 8116 (1999). http://dx.doi.org/10.1021/jp991659y. crossref(new window)

77.
Lee JM, Park JS, Lee SH, Kim H, Yoo S, Kim SO. Selective electron- or hole-transport enhancement in bulk-heterojunction organic solar cells with N- or B-doped carbon nanotubes. Adv Mater, 23, 629 (2011). http://dx.doi.org/10.1002/adma.201003296. crossref(new window)

78.
Kymakis E, Amaratunga GAJ. Single-wall carbon nanotube/conjugated polymer photovoltaic devices. Appl Phys Lett, 80, 112 (2002). http://dx.doi.org/10.1063/1.1428416. crossref(new window)

79.
Landi BJ, Raffaelle RP, Castro SL, Bailey SG. Single-wall carbon nanotube-polymer solar cells. Prog Photovolt Res Appl, 13, 165 (2005). http://dx.doi.org/10.1002/pip.604. crossref(new window)

80.
Nogueira AF, Lomba BS, Soto-Oviedo MA, Correia CRD, Corio P, Furtado CA, Hümmelgen IA. Polymer solar cells using single-wall carbon nanotubes modified with thiophene pedant groups. J Phys Chem C, 111, 18431 (2007). http://dx.doi.org/10.1021/jp074979n. crossref(new window)

81.
Bhattacharyya S, Kymakis E, Amaratunga GAJ. Photovoltaic properties of dye functionalized single-wall carbon nanotube/conjugated polymer devices. Chem Mater, 16, 4819 (2004). http://dx.doi.org/10.1021/cm0496063. crossref(new window)

82.
Berson S, De Bettignies R, Bailly S, Guillerez S, Jousselme B. Elaboration of P3HT/CNT/PCBM composites for organic photovoltaic cells. Adv Funct Mater, 17, 3363 (2007). http://dx.doi.org/10.1002/adfm.200700438. crossref(new window)

83.
Hatton RA, Blanchard NP, Tan LW, Latini G, Cacialli F, Silva SRP. Oxidised carbon nanotubes as solution processable, high work function hole-extraction layers for organic solar cells. Org Electron, 10, 388 (2009). http://dx.doi.org/10.1016/j.orgel.2008.12.013. crossref(new window)

84.
Pradhan B, Batabyal SK, Pal AJ. Functionalized carbon nanotubes in donor/acceptor-type photovoltaic devices. Appl Phys Lett, 88, 093106 (2006). http://dx.doi.org/10.1063/1.2179372. crossref(new window)

85.
Yang SJ, Park CR. Facile preparation of monodisperse ZnO quantum dots with high quality photoluminescence characteristics. Nanotechnology, 19, 035609 (2008). http://dx.doi.org/10.1088/0957-4484/19/03/035609. crossref(new window)

86.
Ago H, Petritsch K, Shaffer MSP, Windle AH, Friend RH. Composites of carbon nanotubes and conjugated polymers for photovoltaic devices. Adv Mater, 11, 1281 (1999). http://dx.doi.org/10.1002/(sici)1521-4095(199910)11:15<1281::aid-adma1281>3.0.co;2-6. crossref(new window)

87.
Hecht DS, Hu L, Irvin G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv Mater, 23, 1482 (2011). http://dx.doi.org/10.1002/adma.201003188. crossref(new window)

88.
Yun D, Feng W, Wu H, Li B, Liu X, Yi W, Qiang J, Gao S, Yan S. Controllable functionalization of single-wall carbon nanotubes by in situ polymerization method for organic photovoltaic devices. Synth Met, 158, 977 (2008). http://dx.doi.org/10.1016/j.synthmet.2008.06.025. crossref(new window)

89.
Landi BJ, Castro SL, Ruf HJ, Evans CM, Bailey SG, Raffaelle RP. CdSe quantum dot-single wall carbon nanotube complexes for polymeric solar cells. Sol Energy Mater Sol Cells, 87, 733 (2005). http://dx.doi.org/10.1016/j.solmat.2004.07.047. crossref(new window)

90.
Kymakis E, Kornilios N, Koudoumas E. Carbon nanotube doping of P3HT : PPPCBM photovoltaic devices. J Phys D: Appl Phys, 41, 165110 (2008). http://dx.doi.org/10.1088/0022-3727/41/16/165110. crossref(new window)

91.
Stylianakis MM, Mikroyannidis JA, Kymakis E. A facile, covalent modification of single-wall carbon nanotubes by thiophene for use in organic photovoltaic cells. Sol Energy Mater Sol Cells, 94, 267 (2010). http://dx.doi.org/10.1016/j.solmat.2009.09.013. crossref(new window)

92.
Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field in atomically thin carbon films. Science, 306, 666 (2004). http://dx.doi.org/10.1126/science.1102896. crossref(new window)

93.
Park S, Ruoff RS. Chemical methods for the production of graphenes. Nature Nanotechnol, 4, 217 (2009). http://dx.doi.org/10.1038/nnano.2009.58. crossref(new window)

94.
Nagashio K, Nishimura T, Kita K, Toriumi A. Mobility variations in mono- and multi-layer graphene films. Appl Phys Express, 2, 025003 (2009). http://dx.doi.org/10.1143/apex.2.025003. crossref(new window)

95.
McCann E. Asymmetry gap in the electronic band structure of bilayer graphene. Phys Rev B, 74, 161403 (2006). http://dx.doi.org/10.1103/PhysRevB.74.161403. crossref(new window)

96.
Han MY, Ozyilmaz B, Zhang Y, Kim P. Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett, 98, 206805 (2007). http://dx.doi.org/10.1103/PhysRevLett.98.206805. crossref(new window)

97.
Boukhvalov DW, Katsnelson MI. Tuning the gap in bilayer graphene using chemical functionalization: density functional calculations. Phys Rev B, 78, 085413 (2008). http://dx.doi.org/10.1103/PhysRevB.78.085413. crossref(new window)

98.
Avouris P. Graphene: electronic and photonic properties and devices. Nano Lett, 10, 4285 (2010). http://dx.doi.org/10.1021/nl102824h. crossref(new window)

99.
Du X, Skachko I, Barker A, Andrei EY. Approaching ballistic transport in suspended graphene. Nature Nanotechnol, 3, 491 (2008). http://dx.doi.org/10.1038/nnano.2008.199. crossref(new window)