JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Synthesis of well-aligned thin multiwalled carbon nanotubes on the silicon substrate and their field emission properties
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 12, Issue 4,  2011, pp.218-222
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2011.12.4.218
 Title & Authors
Synthesis of well-aligned thin multiwalled carbon nanotubes on the silicon substrate and their field emission properties
Yuan, Huajun; Shin, Dong-Hoon; Kim, Bawl; Lee, Cheol-Jin;
  PDF(new window)
 Abstract
Well-aligned multi-walled carbon nanotubes (MWCNTs) were successfully synthesized by catalytic chemical vapor deposition using a hydrogen sulfide () additive onto Al/Fe thin film deposited on Si wafers. Transmission electron microscopy images indicated that the as-grown carbon products were thin MWCNTs with small outer diameters of less than 10 nm. plays a key role in synthesizing thin MWCNTs with a large inside hollow core. The well-aligned thin MWCNTs showed a low turn-on voltage of about 1.1 V/ at a current density of 0.1 and a high emission current of about 1.0 mA/ at a bias field of 2.3 V/. We suggest a possible growth mechanism for the well-aligned thin MWCNTs with a large inside hollow core.
 Keywords
multi-walled carbon nanotubes;field emission;
 Language
English
 Cited by
1.
Synthesis of thin-multiwalled carbon nanotubes by Fe-Mo/MgO catalyst using sol-gel method,;;;;

Carbon letters, 2012. vol.13. 2, pp.99-108 crossref(new window)
2.
KOH 활성화가 슈퍼커패시터용 콜타르 피치 활성탄소의 전기화학적 성능에 미치는 영향,허지훈;서민강;김학용;김익준;박수진;

폴리머, 2012. vol.36. 6, pp.756-760 crossref(new window)
1.
Numerical simulation of polarization beam splitter with triangular lattice of multi-walled carbon nanotube arrays, Optics Communications, 2015, 356, 182  crossref(new windwow)
2.
Influence of KOH Activation on Electrochemical Performance of Coal Tar Pitch-based Activated Carbons for Supercapacitor, Polymer Korea, 2012, 36, 6, 756  crossref(new windwow)
3.
Synthesis of thin-multiwalled carbon nanotubes by Fe-Mo/MgO catalyst using sol-gel method, Carbon letters, 2012, 13, 2, 99  crossref(new windwow)
 References
1.
Iijima S. Helical microtubules of graphitic carbon. Nature, 354, 56 (1991). http://dx.doi.org/10.1038/354056a0. crossref(new window)

2.
Bethune DS, Kiang CH, De Vries MS, Gorman G, Savoy R, Vazquez J, Beyers R. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature, 363, 605 (1993). http://dx.doi.org/10.1038/363605a0. crossref(new window)

3.
Journet C, Maser WK, Bernier P, Loiseau A, Lamy de la Chapelle M, Lefrant S, Deniard P, Lee R, Fischer JE. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature, 388, 756 (1997). http://dx.doi.org/10.1038/41972. crossref(new window)

4.
Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tomanek D, Fischer JE, Smalley RE. Crystalline ropes of metallic carbon nanotubes. Science, 273, 483 (1996). http://dx.doi.org/10.1126/science.273.5274.483. crossref(new window)

5.
Li WZ, Xie SS, Qian LX, Chang BH, Zou BS, Zhou WY, Zhao RA, Wang G. Large-scale synthesis of aligned carbon nanotubes. Science, 274, 1701 (1996). http://dx.doi.org/10.1126/science.274.5293.1701. crossref(new window)

6.
Fan S, Chapline MG, Franklin NR, Tombler TW, Cassell AM, Dai H. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science, 283, 512 (1999). http://dx.doi.org/10.1126/science.283.5401.512. crossref(new window)

7.
Lee CJ, Kim DW, Lee TJ, Choi YC, Park YS, Lee YH, Choi WB, Lee NS, Park GS, Kim JM. Synthesis of aligned carbon nanotubes using thermal chemical vapor deposition. Chem Phys Lett, 312, 461 (1999). http://dx.doi.org/10.1016/S0009-2614(99)01074-X. crossref(new window)

8.
Lee CJ, Park J. Growth model for bamboolike structured carbon nanotubes synthesized using thermal chemical vapor deposition. J Phys Chem B, 105, 2365 (2001). http://dx.doi.org/10.1021/jp0032762. crossref(new window)

9.
Rohmund F, Falk LKL, Campbell EEB. A simple method for the production of large arrays of aligned carbon nanotubes. Chem Phys Lett, 328, 369 (2000). http://dx.doi.org/10.1016/S0009-2614(00)00996-9. crossref(new window)

10.
Lee CJ, Lyu SC, Kim HW, Park CY, Yang CW. Large-scale production of aligned carbon nanotubes by the vapor phase growth method. Chem Phys Lett, 359, 109 (2002). http://dx.doi.org/10.1016/s0009-2614(02)00648-6. crossref(new window)

11.
Ren ZF, Huang ZP. Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science, 282, 1105 (1998). http://dx.doi.org/10.1126/science.282.5391.1105. crossref(new window)

12.
Merkulov VI, Guillorn MA, Lowndes DH, Simpson ML, Voelkl E. Shaping carbon nanostructures by controlling the synthesis process. Appl Phys Lett, 79, 1178 (2001). http://dx.doi.org/10.1063/1.1395517. crossref(new window)

13.
Merkulov VI, Melechko AV, Guillorn MA, Lowndes DH, Simpson ML. Alignment mechanism of carbon nanofibers produced by plasma-enhanced chemical-vapor deposition. Appl Phys Lett, 79, 2970 (2001). http://dx.doi.org/10.1063/1.1415411. crossref(new window)

14.
Koehne J, Chen H, Li J, Cassell AM, Ye Q, Ng HT, Han J, Meyyappan M. Ultrasensitive label-free DNA analysis using an electronic chip based on carbon nanotube nanoelectrode arrays. Nanotechnology, 14, 1239 (2003). http://dx.doi.org/10.1088/0957-4484/14/12/001. crossref(new window)

15.
Mayne M, Grobert N, Terrones M, Kamalakaran R, Ruhle M, Kroto HW, Walton DRM. Pyrolytic production of aligned carbon nanotubes from homogeneously dispersed benzene-based aerosols. Chem Phys Lett, 338, 101 (2001). http://dx.doi.org/10.1016/s0009-2614(01)00278-0. crossref(new window)

16.
Lee CJ, Son KH, Park J, Yoo JE, Huh Y, Lee JY. Low temperature growth of vertically aligned carbon nanotubes by thermal chemical vapor deposition. Chem Phys Lett, 338, 113 (2001). http://dx.doi.org/10.1016/s0009-2614(00)01378-6. crossref(new window)

17.
Lee CJ, Park J, Kang SY, Lee JH. Growth and field electron emission of vertically aligned multiwalled carbon nanotubes. Chem Phys Lett, 326, 175 (2000). http://dx.doi.org/10.1016/S0009-2614(00)00751-X. crossref(new window)

18.
Liu BC, Lee TJ, Lee SH, Park CY, Lee CJ. Large-scale synthesis of high-purity well-aligned carbon nanotubes using pyrolysis of iron(II) phthalocyanine and acetylene. Chem Phys Lett, 377, 55 (2003). http://dx.doi.org/10.1016/s0009-2614(03)01092-3. crossref(new window)

19.
Lee YT, Park J, Choi YS, Ryu H, Lee HJ. Temperature-dependent growth of vertically aligned carbon nanotubes in the range ${800-1100^{\circ}C}$. J Phys Chem B, 106, 7614 (2002). http://dx.doi. org/10.1021/jp020488l. crossref(new window)

20.
Ci L, Rao Z, Zhou Z, Tang D, Yan X, Liang Y, Liu D, Yuan H, Zhou W, Wang G, Liu W, Xie S. Double wall carbon nanotubes promoted by sulfur in a floating iron catalyst CVD system. Chem Phys Lett, 359, 63 (2002). http://dx.doi.org/10.1016/s0009-2614(02)00600-0. crossref(new window)

21.
Song L, Ci L, Lv L, Zhou Z, Yan X, Liu D, Yuan H, Gao Y, Wang J, Liu L, Zhao X, Zhang Z, Dou X, Zhou W, Wang G, Wang C, Xie S. Direct synthesis of a macroscale single-walled carbon nanotube non-woven material. Adv Mater, 16, 1529 (2004). http://dx.doi.org/10.1002/adma.200306393. crossref(new window)

22.
Saito Y, Nakahira T, Uemura S. Growth conditions of doublewalled carbon nanotubes in arc discharge. J Phys Chem B, 107, 931 (2003). http://dx.doi.org/10.1021/jp021367o. crossref(new window)

23.
Ago H, Komatsu T, Ohshima S, Kuriki Y, Yumura M. Dispersion of metal nanoparticles for aligned carbon nanotube arrays. Appl Phys Lett, 77, 79 (2000). http://dx.doi.org/10.1063/1.126883. crossref(new window)

24.
Murakami Y, Chiashi S, Miyauchi Y, Hu M, Ogura M, Okubo T, Maruyama S. Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy. Chem Phys Lett, 385, 298 (2004). http://dx.doi.org/10.1016/j.cplett.2003.12.095. crossref(new window)

25.
Maruyama S, Einarsson E, Murakami Y, Edamura T. Growth process of vertically aligned single-walled carbon nanotubes. Chem Phys Lett, 403, 320 (2005). http://dx.doi.org/10.1016/j.cplett.2005.01.031. crossref(new window)

26.
Hata K, Futaba DN, Mizuno K, Namai T, Yumura M, Iijima S. Water-assisted highly efficient synthesis of impurity-free singlewalled carbon nanotubes. Science, 306, 1362 (2004). http://dx.doi.org/10.1126/science.1104962. crossref(new window)

27.
Tibbetts GG, Bernardo CA, Gorkiewicz DW, Alig RL. Role of sulfur in the production of carbon fibers in the vapor phase. Carbon, 32, 569 (1994). http://dx.doi.org/10.1016/0008-6223(94)90074-4. crossref(new window)

28.
Kim MS, Rodriguez NM, Baker RTK. The interplay between sulfur adsorption and carbon deposition on cobalt catalysts. J Catal, 143, 449 (1993). http://dx.doi.org/10.1006/jcat.1993.1289. crossref(new window)

29.
Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ. Storage of hydrogen in single-walled carbon nanotubes. Nature, 386, 377 (1997). http://dx.doi.org/10.1038/386377a0. crossref(new window)

30.
Meyer RR, Sloan J, Dunin-Borkowski RE, Kirkland AI, Novotny MC, Bailey SR, Hutchison JL, Green MLH. Discrete atom imaging of one-dimensional crystals formed within single-walled carbon nanotubes. Science, 289, 1324 (2000). http://dx.doi.org/10.1126/science.289.5483.1324. crossref(new window)