JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Performance of modified graphite as anode material for lithium-ion secondary battery
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 12, Issue 4,  2011, pp.243-248
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2011.12.4.243
 Title & Authors
Performance of modified graphite as anode material for lithium-ion secondary battery
Zheng, Hua; Kim, Myung-Soo;
  PDF(new window)
 Abstract
Two different types of graphite, such as flake graphite (FG) and spherical graphite (SG), were used as anode materials for a lithium-ion secondary battery in order to investigate their electrochemical performance. The FG particles were prepared by pulverizing natural graphite with a planetary mill. The SG particles were treated by immersing them in acid solutions or mixing them with various carbon additives. With a longer milling time, the particle size of the FG decreased. Since smaller particles allow more exposure of the edge planes toward the electrolyte, it could be possible for the FG anodes with longer milling time to deliver high reversible capacity; however, their initial efficiency was found to have decreased. The initial efficiency of SG anodes with acid treatments was about 90%, showing an over 20% higher value than that of FG anodes. With acid treatment, the discharge rate capability and the initial efficiency improved slightly. The electrochemical properties of the SG anodes improved slightly with carbon additives such as acetylene black (AB), Super P, Ketjen black, and carbon nanotubes. Furthermore, the cyclability was much improved due to the effect of the conductive bridge made by carbon additives such as AB and Super P.
 Keywords
flake graphite;spherical graphite;lithium-ion secondary battery;anode;carbon additive;
 Language
English
 Cited by
1.
KOH 활성화가 슈퍼커패시터용 콜타르 피치 활성탄소의 전기화학적 성능에 미치는 영향,허지훈;서민강;김학용;김익준;박수진;

폴리머, 2012. vol.36. 6, pp.756-760 crossref(new window)
2.
Styrene-Acrylonitrile 기반 다공성 탄소의 전기화학적 특성에 활성화 온도가 미치는 영향,이지한;허건영;박수진;

폴리머, 2012. vol.36. 6, pp.739-744 crossref(new window)
1.
Graphene-Based Carbon Materials for Electrochemical Energy Storage, Journal of Nanomaterials, 2013, 2013, 1  crossref(new windwow)
2.
Preparation and characterization of anode materials using expanded graphite/pitch composite for high-power Li-ion secondary batteries, Research on Chemical Intermediates, 2014, 40, 7, 2501  crossref(new windwow)
3.
Influence of Activation Temperature on Electrochemical Performances of Styrene-Acrylonitrile Based Porous Carbons, Polymer Korea, 2012, 36, 6, 739  crossref(new windwow)
4.
Influence of KOH Activation on Electrochemical Performance of Coal Tar Pitch-based Activated Carbons for Supercapacitor, Polymer Korea, 2012, 36, 6, 756  crossref(new windwow)
5.
A mesoporous WO3−X/graphene composite as a high-performance Li-ion battery anode, Applied Surface Science, 2014, 316, 604  crossref(new windwow)
 References
1.
Vasilchina H, Aleksandrova A, Momchilov A, Banov B, Predoana L, Barau A, Zaharesku M. Spherical graphite as anode in high efficient lithium batteries. Proceedings of the International Workshop "Portable and Emergency Energy Sources--from Materials to Systems", Primorsko, Bulgaria (2005).

2.
Zhang Y, Zhang XG, Zhang HL, Zhao ZG, Li F, Liu C, Cheng HM. Composite anode material of silicon/graphite/carbon nanotubes for Li-ion batteries. Electrochim Acta, 51, 4994 (2006). http://dx.doi.org/10.1016/j.electacta.2006.01.043. crossref(new window)

3.
Li X, Yoon SH, Du K, Zhang Y, Huang J, Kang F. An urchin-like graphite-based anode material for lithium ion batteries. Electrochim Acta, 55, 5519 (2010). http://dx.doi.org/10.1016/j.electacta.2010.04.101. crossref(new window)

4.
Wu YS, Wang YH, Lee YH. Performance enhancement of spherical natural graphite by phenol resin in lithium ion batteries. J Alloys Compd, 426, 218 (2006). http://dx.doi.org/10.1016/j.jallcom.2005.11.093. crossref(new window)

5.
Zhao H, Ren J, He X, Li J, Jiang C, Wan C. Modification of natural graphite for lithium ion batteries. Solid State Sci, 10, 612 (2008). http://dx.doi.org/10.1016/j.solidstatesciences.2007.10.017. crossref(new window)

6.
Wang X, Gai GS, Yang YF, Shen WC. Preparation of natural microcrystalline graphite with high sphericity and narrow size distribution. Powder Technol, 181, 51 (2008). http://dx.doi.org/10.1016/j.powtec.2007.06.025. crossref(new window)

7.
Wu HC, Guo ZZ, Wen HP, Yang MH. Study the fading mechanism of LiMn2O4 battery with spherical and flake type graphite as anode materials. J Power Sources, 146, 736 (2005). http://dx.doi.org/10.1016/j.jpowsour.2005.03.070. crossref(new window)

8.
Guoping W, Bolan Z, Min Y, Xiaoluo X, Meizheng Q, Zuolong Y. A modified graphite anode with high initial efficiency and excellent cycle life expectation. Solid State Ionics, 176, 905 (2005). http://dx.doi.org/10.1016/j.ssi.2004.11.009. crossref(new window)

9.
Yoshio M, Wang H, Fukuda K, Umeno T, Abe T, Ogumi Z. Improvement of natural graphite as a lithium-ion battery anode material, from raw flake to carbon-coated sphere. J Mater Chem, 14, 1754 (2004). http://dx.doi.org/10.1039/b316702j. crossref(new window)

10.
Zou L, Kang F, Zheng YP, Shen W. Modified natural flake graphite with high cycle performance as anode material in lithium ion batteries. Electrochim Acta, 54, 3930 (2009). http://dx.doi.org/10.1016/j.electacta.2009.02.012. crossref(new window)

11.
Wang H, Umeno T, Mizuma K, Yoshio M. Highly conductive bridges between graphite spheres to improve the cycle performance of a graphite anode in lithium-ion batteries. J Power Sources, 175, 886 (2008). http://dx.doi.org/10.1016/j.jpowsour.2007.09.103. crossref(new window)

12.
Wang H, Ikeda T, Fukuda K, Yoshio M. Effect of milling on the electrochemical performance of natural graphite as an anode material for lithium-ion battery. J Power Sources, 83, 141 (1999). http://dx.doi.org/10.1016/S0378-7753(99)00288-8. crossref(new window)

13.
Wu YP, Jiang C, Wan C, Holze R. Effects of pretreatment of natural graphite by oxidative solutions on its electrochemical performance as anode material. Electrochim Acta, 48, 867 (2003). http://dx.doi.org/10.1016/s0013-4686(02)00780-6. crossref(new window)

14.
Yang DJ, Wang SG, Zhang Q, Sellin PJ, Chen G. Thermal and electrical transport in multi-walled carbon nanotubes. Phys Lett A, 329, 207 (2004). http://dx.doi.org/10.1016/j.physleta.2004.05.070. crossref(new window)

15.
Li XL, Du K, Huang JM, Kang FY, Shen WC. Effect of carbon nanotubes on the anode performance of natural graphite for lithium ion batteries. J Phys Chem Solids, 71, 457 (2010). http://dx.doi.org/10.1016/j.jpcs.2009.12.010. crossref(new window)