JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Synthesis and applications of graphene electrodes
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 13, Issue 1,  2012, pp.1-16
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2012.13.1.001
 Title & Authors
Synthesis and applications of graphene electrodes
Shin, Dolly; Bae, Su-Kang; Yan, Chao; Kang, Jun-Mo; Ryu, Jae-Chul; Ahn, Jong-Hyun; Hong, Byung-Hee;
  PDF(new window)
 Abstract
The near explosion of attention given to graphene has attracted many to its research field. As new studies and findings about graphene synthesis, properties, electronic quality control, and possible applications simultaneous burgeon in the scientific community, it is quite hard to grasp the breadth of graphene history. At this stage, graphene's many fascinating qualities have been amply reported and its potential for various electronic applications are increasing, pulling in ever more newcomers to the field of graphene. Thus it has become important as a community to have an equal understanding of how this material was discovered, why it is stirring up the scientific community and what sort of progress has been made and for what purposes. Since the first discovery, the hype has expediently led to near accomplishment of industrial-sized production of graphene. This review covers the progress and development of synthesis and transfer techniques with an emphasis on the most recent technique of chemical vapor deposition, and explores the potential applications of graphene that are made possible with the improved synthesis and transfer.
 Keywords
graphene;graphene synthesis;graphene applications;overview of graphene research development;
 Language
English
 Cited by
1.
Electrochemical characterization of activated carbon-sulfur composite electrode in organic electrolyte solution,;;;;

Carbon letters, 2013. vol.14. 2, pp.126-130 crossref(new window)
2.
Influence of carbon nanofibers on electrochemical properties of carbon nanofibers/glass fibers composites,;;

Current Applied Physics, 2013. vol.13. 4, pp.640-644 crossref(new window)
3.
Water and oxygen permeation through transparent ethylene vinyl alcohol/(graphene oxide) membranes,;;

Carbon letters, 2014. vol.15. 1, pp.50-56 crossref(new window)
4.
Thermal properties in strong hydrogen bonding systems composed of poly(vinyl alcohol), polyethyleneimine, and graphene oxide,;;;

Carbon letters, 2014. vol.15. 4, pp.282-289 crossref(new window)
1.
Synthesis of microporous carbon nanotubes by templating method and their high electrochemical performance, Electrochimica Acta, 2012, 78, 147  crossref(new windwow)
2.
Doping suppression and mobility enhancement of graphene transistors fabricated using an adhesion promoting dry transfer process, Applied Physics Letters, 2013, 103, 24, 243504  crossref(new windwow)
3.
Influence of carbon nanofibers on electrochemical properties of carbon nanofibers/glass fibers composites, Current Applied Physics, 2013, 13, 4, 640  crossref(new windwow)
4.
Improved performance and stability of field-effect transistors with polymeric residue-free graphene channel transferred by gold layer, Physical Chemistry Chemical Physics, 2014, 16, 9, 4098  crossref(new windwow)
5.
Graphene–BODIPY as a photocatalyst in the photocatalytic–biocatalytic coupled system for solar fuel production from CO2, Journal of Materials Chemistry A, 2014, 2, 14, 5068  crossref(new windwow)
6.
Graphene Based Nanogenerator for Energy Harvesting, Japanese Journal of Applied Physics, 2013, 52, 6S, 06GA02  crossref(new windwow)
7.
Effect of fluorine–oxygen mixed gas treated graphite fibers on electrochemical behaviors of platinum–ruthenium nanoparticles toward methanol oxidation, Journal of Fluorine Chemistry, 2012, 144, 124  crossref(new windwow)
8.
Effect of reinforcement on the barrier and dielectric properties of epoxidized natural rubber-graphene nanocomposites, Polymer Engineering & Science, 2015, 55, 11, 2439  crossref(new windwow)
9.
Thermal properties in strong hydrogen bonding systems composed of poly(vinyl alcohol), polyethyleneimine, and graphene oxide, Carbon letters, 2014, 15, 4, 282  crossref(new windwow)
10.
Large-area graphene synthesis and its application to interface-engineered field effect transistors, Solid State Communications, 2012, 152, 15, 1350  crossref(new windwow)
11.
Water and oxygen permeation through transparent ethylene vinyl alcohol/(graphene oxide) membranes, Carbon letters, 2014, 15, 1, 50  crossref(new windwow)
12.
Functionalized Graphene as an Ultrathin Seed Layer for the Atomic Layer Deposition of Conformal High-kDielectrics on Graphene, ACS Applied Materials & Interfaces, 2013, 5, 22, 11515  crossref(new windwow)
13.
Production of Pt nanoparticles-supported chelating group-modified graphene for direct methanol fuel cells, Research on Chemical Intermediates, 2014, 40, 7, 2509  crossref(new windwow)
14.
Synthesis of Monolayer Graphene Having a Negligible Amount of Wrinkles by Stress Relaxation, Nano Letters, 2013, 13, 6, 2496  crossref(new windwow)
15.
Easy synthesis of polyaniline-based mesoporous carbons and their high electrochemical performance, Microporous and Mesoporous Materials, 2012, 163, 140  crossref(new windwow)
16.
Preparation and electrochemical analysis of graphene/polyaniline composites prepared by aniline polymerization, Research on Chemical Intermediates, 2014, 40, 7, 2519  crossref(new windwow)
17.
On the use of carbon black loaded nitrogen-doped carbon aerogel for the electrosorption of sodium chloride from saline water, Electrochimica Acta, 2015, 170, 154  crossref(new windwow)
18.
Preparation of polymeric modifier-attached graphene-supported bimetallic Pt–Pd nanocomposites, and their electrochemical properties as electro-catalysts, Research on Chemical Intermediates, 2014, 40, 8, 2773  crossref(new windwow)
19.
Electrochemical characterization of activated carbon-sulfur composite electrode in organic electrolyte solution, Carbon letters, 2013, 14, 2, 126  crossref(new windwow)
 References
1.
Peierls RE. Quelques proprieties typiques des corpses solides. Ann I H Poincare, 5, 177 (1935).

2.
Landau LD. Zur Theorie der phasenumwandlungen II. Phys Z Sowjetunion, 11, 26 (1937).

3.
Geim AK, Novoselov KS. The rise of graphene. Nature Mater, 6, 183 (2007). http://dx.doi.org/10.1038/nmat1849. crossref(new window)

4.
Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field in atomically thin carbon films. Science, 306, 666 (2004). http://dx.doi.org/10.1126/ science.1102896. crossref(new window)

5.
Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK. Two-dimensional atomic crystals. Proc Natl Acad Sci U S A, 102, 10451 (2005). http://dx.doi.org/10.1073/pnas.0502848102. crossref(new window)

6.
Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 146, 351 (2008). http://dx.doi.org/10.1016/j.ssc.2008.02.024. crossref(new window)

7.
Morozov SV, Novoselov KS, Katsnelson MI, Schedin F, Elias DC, Jaszczak JA, Geim AK. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys Rev Lett, 100, 016602 (2008). http://dx.doi.org/10.1103/PhysRevLett.100.016602. crossref(new window)

8.
Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN. Superior thermal conductivity of single-layer graphene. Nano Lett, 8, 902 (2008). http://dx.doi.org/10.1021/nl0731872. crossref(new window)

9.
Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321, 385 (2008). http://dx.doi.org/10.1126/science.1157996. crossref(new window)

10.
Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS. Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater, 22, 3906 (2010). http://dx.doi.org/10.1002/adma.201001068. crossref(new window)

11.
Zhang Y, Small JP, Pontius WV, Kim P. Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices. Appl Phys Lett, 86, 073104 (2005). http://dx.doi.org/10.1063/1.1862334. crossref(new window)

12.
Geim AK. Graphene: status and prospects. Science, 324, 1530 (2009). http://dx.doi.org/10.1126/science.1158877. crossref(new window)

13.
Park S, Ruoff RS. Chemical methods for the production of graphenes. Nature Nanotechnol, 4, 217 (2009). http://dx.doi.org/10.1038/nnano.2009.58. crossref(new window)

14.
Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen ST, Ruoff RS. Preparation and characterization of graphene oxide paper. Nature, 448, 457 (2007). http://dx.doi.org/10.1038/nature06016. crossref(new window)

15.
Park S, Lee KS, Bozoklu G, Cai W, Nguyen SBT, Ruoff RS. Graphene oxide papers modified by divalent ions--enhancing mechanical properties via chemical cross-linking. ACS Nano, 2, 572 (2008). http://dx.doi.org/10.1021/nn700349a. crossref(new window)

16.
Kumar A, Reddy ALM, Mukherjee A, Dubey M, Zhan X, Singh N, Ci L, Billups WE, Nagurny J, Mital G, Ajayan PM. Direct synthesis of lithium-intercalated graphene for electrochemical energy storage application. ACS Nano, 5, 4345 (2011). http://dx.doi.org/10.1021/nn201527p. crossref(new window)

17.
Zhu Y, Murali S, Stoller MD, Velamakanni A, Piner RD, Ruoff RS. Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon, 48, 2118 (2010). http://dx.doi.org/10.1016/j.carbon.2010.02.001. crossref(new window)

18.
Murugan AV, Muraliganth T, Manthiram A. Rapid, facile microwave- solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy strorage. Chem Mater, 21, 5004 (2009). http://dx.doi.org/10.1021/cm902413c. crossref(new window)

19.
Long J, Fang M, Chen G. Microwave-assisted rapid synthesis of water-soluble graphene. J Mater Chem, 21, 10421 (2011). http://dx.doi.org/10.1039/c0jm04564k. crossref(new window)

20.
Charrier A, Coati A, Argunova T, Thibaudau F, Garreau Y, Pinchaux R, Forbeaux I, Debever JM, Sauvage-Simkin M, Themlin JM. Solid-state decomposition of silicon carbide for growing ultra-thin heteroepitaxial graphite films. J Appl Phys, 92, 2479 (2002). http://dx.doi.org/10.1063/1.1498962. crossref(new window)

21.
Forbeaux I, Themlin JM, Debever JM. Heteroepitaxial graphite on 6H-SiC(0001): Interface formation through conduction-band electronic structure. Phys Rev B, 58, 16396 (1998). http://dx.doi.org/10.1103/PhysRevB.58.16396. crossref(new window)

22.
Tung RT, Gibson JM, Poate JM. Formation of ultrathin dingle- crystal silicide films on Si: surface and interfacial stabilization of Si-NiSi2 epitaxial structures. Phys Rev Lett, 50, 429 (1983). http://dx.doi.org/10.1103/PhysRevLett.50.429. crossref(new window)

23.
Edman L, Sundqvist B, McRae E, Litvin-Staszewska E. Electrical resistivity of single-crystal graphite under pressure: an anisotropic three-dimensional semimetal. Phys Rev B, 57, 6227 (1998). http://dx.doi.org/10.1103/PhysRevB.57.6227. crossref(new window)

24.
Binns C, Baker SH, Demangeat C, Parlebas JC. Growth, electronic, magnetic and spectroscopic properties of transition metals on graphite. Surf Sci Rep, 34, 107 (1999). http://dx.doi.org/10.1016/S0167-5729(99)00004-7. crossref(new window)

25.
Kopelevich Y, Esquinazi P, Torres JHS, Moehlecke S. Ferromagnetic- and superconducting-like behavior of graphite. J Low Temp Phys, 119, 691 (2000). http://dx.doi.org/10.1023/A:1004637814008. crossref(new window)

26.
Berger C, Song Z, Li T, Li X, Ogbazghi AY, Feng R, Dai Z, Alexei N, Conrad MEH, First PN, De Heer WA. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B, 108, 19912 (2004). http://dx.doi.org/10.1021/jp040650f. crossref(new window)

27.
Lee DS, Riedl C, Krauss B, Klitzing KV, Starke U, Smet JH. Raman spectra of epitaxial graphene on SiC and of epitaxial graphene transferred to SiO2. Nano Lett, 8, 4320 (2008). http://dx.doi.org/10.1021/nl802156w. crossref(new window)

28.
Unarunotai S, Murata Y, Chialvo CE, Kim HS, MacLaren S, Mason N, Petrov I, Rogers JA. Transfer of graphene layers grown on SiC wafers to other substrates and their integration into field effect transistors. Appl Phys Lett, 95, 202101 (2009). http://dx.doi.org/10.1063/1.3263942. crossref(new window)

29.
Caldwell JD, Anderson TJ, Culbertson JC, Jernigan GG, Hobart KD, Kub FJ, Tadjer MJ, Tedesco JL, Hite JK, Mastro MA, Myers- Ward RL, Eddy Jr CR, Campbell PM, Gaskill DK. Technique for the dry transfer of epitaxial graphene onto arbitrary substrates. ACS Nano, 4, 1108 (2010). http://dx.doi.org/10.1021/nn901585p. crossref(new window)

30.
Unarunotai S, Koepke JC, Tsai CL, Du F, Chialvo CE, Murata Y, Haasch R, Petrov I, Mason N, Shim M, Lyding J, Rogers JA. Layer-by-layer transfer of multiple, large area sheets of graphene grown in multilayer stacks on a single SiC wafer. ACS Nano, 4, 5591 (2010). http://dx.doi.org/10.1021/nn101896a. crossref(new window)

31.
Vaari J, Lahtinen J, Hautojarvi P. The adsorption and decomposition of acetylene on clean and K-covered Co(0001). Catal Lett, 44, 43 (1997). http://dx.doi.org/10.1023/A:1018972924563. crossref(new window)

32.
Ueta H, Saida M, Nakai C, Yamada Y, Sasaki M, Yamamoto S. Highly oriented monolayer graphite formation on Pt(1 1 1) by a supersonic methane beam. Surf Sci, 560, 183 (2004). http://dx.doi.org/10.1016/j.susc.2004.04.039. crossref(new window)

33.
Starr DE, Pazhetnov EM, Stadnichenko AI, Boronin AI, Shaikhutdinov SK. Carbon films grown on Pt(1 1 1) as supports for model gold catalysts. Surf Sci, 600, 2688 (2006). http://dx.doi.org/10.1016/j.susc.2006.04.035. crossref(new window)

34.
Gall NR, Rut'kov EV, Tontegode AY. Interaction of silver atoms with iridium and with a two-dimensional graphite film on iridium: adsorption, desorption, and dissolution. Phys Solid State, 46, 371 (2004). http://dx.doi.org/10.1134/1.1649439. crossref(new window)

35.
Coraux J, N'Diaye AT, Busse C, Michely T. Structural coherency of graphene on Ir(111). Nano Lett, 8, 565 (2008). http://dx.doi.org/10.1021/nl0728874. crossref(new window)

36.
Vazquez De Parga AL, Calleja F, Borca B, Passeggi MCG, Hinarejos JJ, Guinea F, Miranda R. Periodically rippled graphene: growth and spatially resolved electronic structure. Phys Rev Lett, 100, 056807 (2008). http://dx.doi.org/10.1103/PhysRevLett.100.056807. crossref(new window)

37.
Marchini S, Gunther S, Wintterlin J. Scanning tunneling microscopy of graphene on Ru(0001). Phys Rev B, 76, 075429 (2007). http://dx.doi.org/10.1103/PhysRevB.76.075429. crossref(new window)

38.
Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Jing K. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett, 9, 30 (2009). http://dx.doi.org/10.1021/nl801827v. crossref(new window)

39.
Yu Q, Lian J, Siriponglert S, Li H, Chen YP, Pei SS. Graphene segregated on Ni surfaces and transferred to insulators. Appl Phys Lett, 93, 113103 (2008). http://dx.doi.org/10.1063/1.2982585. crossref(new window)

40.
Kim J, Ishihara M, Koga Y, Tsugawa K, Hasegawa M, Iijima S. Low-temperature synthesis of large-area graphene-based transparent conductive films using surface wave plasma chemical vapor deposition. Appl Phys Lett, 98, 091502 (2011). http://dx.doi.org/10.1063/1.3561747. crossref(new window)

41.
Reina A, Thiele S, Jia X, Bhaviripudi S, Dresselhaus M, Schaefer J, Kong J. Growth of large-area single- and Bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Res, 2, 509 (2009). http://dx.doi.org/10.1007/s12274-009-9059-y. crossref(new window)

42.
Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Ahn JH, Kim P, Choi JY, Hong BH. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457, 706 (2009). http://dx.doi.org/10.1038/nature07719. crossref(new window)

43.
Li X, Cai W, Colombo L, Ruoff RS. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett, 9, 4268 (2009). http://dx.doi.org/10.1021/nl902515k. crossref(new window)

44.
Li X, Magnuson CW, Venugopal A, An J, Suk JW, Han B, Borysiak M, Cai W, Velamakanni A, Zhu Y, Fu L, Vogel EM, Voelkl E, Colombo L, Ruoff RS. Graphene films with large domain size by a two-step chemical vapor deposition process. Nano Lett, 10, 4328 (2010). http://dx.doi.org/10.1021/nl101629g. crossref(new window)

45.
Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 324, 1312 (2009). http://dx.doi.org/10.1126/science.1171245. crossref(new window)

46.
Bhaviripudi S, Jia X, Dresselhaus MS, Kong J. Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Lett, 10, 4128 (2010). http://dx.doi.org/10.1021/nl102355e. crossref(new window)

47.
Li X, Zhu Y, Cai W, Borysiak M, Han B, Chen D, Piner RD, Colomba L, Ruoff RS. Transfer of large-area graphene films for high- performance transparent conductive electrodes. Nano Lett, 9, 4359 (2009). http://dx.doi.org/10.1021/nl902623y. crossref(new window)

48.
Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK. Raman spectrum of graphene and graphene layers. Phys Rev Lett, 97, 187401 (2006). http://dx.doi.org/10.1103/PhysRevLett.97.187401. crossref(new window)

49.
Cancado LG, Jorio A, Ferreira EHM, Stavale F, Achete CA, Capaz RB, Moutinho MVO, Lombardo A, Kulmala TS, Ferrari AC. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett, 11, 3190 (2011). http://dx.doi. org/10.1021/nl201432g. crossref(new window)

50.
Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R. Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett, 10, 751 (2010). http://dx.doi.org/10.1021/nl904286r. crossref(new window)

51.
Molitor F, Graf D, Stampfer C, Ihn T, Ensslin K. Raman imaging and electronic properties of graphene. Adv Solid State Phys, 47, 171 (2008). http://dx.doi.org/10.1007/978-3-540-74325-5_14. crossref(new window)

52.
Lee Y, Bae S, Jang H, Jang S, Zhu SE, Sim SH, Song YI, Hong BH, Ahn JH. Wafer-scale synthesis and transfer of graphene films. Nano Lett, 10, 490 (2010). http://dx.doi.org/10.1021/nl903272n. crossref(new window)

53.
Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Balakrishnan J, Lei T, Ri Kim H, Song YI, Kim YJ, Kim KS, Ozyilmaz B, Ahn JH, Hong BH, Iijima S. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnol, 5, 574 (2010). http://dx.doi.org/10.1038/nnano.2010.132. crossref(new window)

54.
Zhang W, Wu P, Li Z, Yang J. First-principles thermodynamics of graphene growth on Cu surfaces. J Phys Chem C, 115, 17782 (2011). http://dx.doi.org/10.1021/jp2006827. crossref(new window)

55.
Li X, Magnuson CW, Venugopal A, Tromp RM, Hannon JB, Vogel EM, Colombo L, Ruoff RS. Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J Am Chem Soc, 133, 2816 (2011). http://dx.doi.org/10.1021/ja109793s. crossref(new window)

56.
Vlassiouk I, Regmi M, Fulvio P, Dai S, Datskos P, Eres G, Smirnov S. Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS Nano, 5, 6069 (2011). http://dx.doi.org/10.1021/nn201978y. crossref(new window)

57.
Yu Q, Jauregui LA, Wu W, Colby R, Tian J, Su Z, Cao H, Liu Z, Pandey D, Wei D, Chung TF, Peng P, Guisinger NP, Stach EA, Bao J, Pei SS, Chen YP. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nature Mater, 10, 443 (2011). http://dx.doi.org/10.1038/nmat3010. crossref(new window)

58.
Sun Z, Yan Z, Yao J, Beitler E, Zhu Y, Tour JM. Growth of graphene from solid carbon sources. Nature, 468, 549 (2010). http://dx.doi.org/10.1038/nature09579. crossref(new window)

59.
Kondo D, Sato S, Yagi K, Harada N, Sato M, Nihei M, Yokoyama N. Low-temperature synthesis of graphene and fabrication of top-gated field effect transistors without using transfer processes. Appl Phys Express, 3, 025102 (2010). http://dx.doi.org/10.1143/apex.3.025102. crossref(new window)

60.
Yao Y, Li Z, Lin Z, Moon KS, Agar J, Wong C. Controlled growth of multilayer, few-layer, and single-layer graphene on metal substrates. J Phys Chem C, 115, 5232 (2011). http://dx.doi.org/10.1143/apex.3.025102. crossref(new window)

61.
Ago H, Ito Y, Mizuta N, Yoshida K, Hu B, Orofeo CM, Tsuji M, Ikeda KI, Mizuno S. Epitaxial chemical vapor deposition growth of single-layer graphene over cobalt film crystallized on sapphire. ACS Nano, 4, 7407 (2010). http://dx.doi.org/10.1021/nn102519b. crossref(new window)

62.
Sukhdeo D. Large-area chemical vapor deposition of graphene over thin films of cobalt. The 2009 NNIN REU Research Accomplishments, National Nanotechnology Infrastructure Network, 100 (2009).

63.
Liu X, Fu L, Liu N, Gao T, Zhang Y, Liao L, Liu Z. Segregation growth of graphene on Cu-Ni alloy for precise layer control. J Phys Chem C, 115, 11976 (2011). http://dx.doi.org/10.1021/jp202933u. crossref(new window)

64.
Wu J, Agrawal M, Becerril HA, Bao Z, Liu Z, Chen Y, Peumans P. Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano, 4, 43 (2010). http://dx.doi.org/10.1021/nn900728d. crossref(new window)

65.
Chang H, Wang G, Yang A, Tao X, Liu X, Shen Y, Zheng Z. A transparent, flexible, low-temperature, and solution-processible graphene composite electrode. Adv Funct Mater, 20, 2893 (2010). http://dx.doi.org/10.1002/adfm.201000900. crossref(new window)

66.
Sun T, Wang ZL, Shi ZJ, Ran GZ, Xu WJ, Wang ZY, Li YZ, Dai L, Qin GG. Multilayered graphene used as anode of organic light emitting devices. Appl Phys Lett, 96, 133301 (2010). http://dx.doi. org/10.1063/1.3373855. crossref(new window)

67.
Jo G, Choe M, Cho CY, Kim JH, Park W, Lee S, Hong WK, Kim TW, Park SJ, Hong BH, Kahng YH, Lee T. Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes. Nanotechnology, 21, 175201 (2010). http://dx.doi.org/10.1088/0957-4484/21/17/175201. crossref(new window)

68.
Wang Y, Tong SW, Xu XF, Ozyilmaz B, Loh KP. Interface engineering of layer-by-layer stacked graphene anodes for high-performance organic solar cells. Adv Mater, 23, 1514 (2011). http://dx.doi.org/10.1002/adma.201003673. crossref(new window)

69.
Wang X, Zhi L, Mullen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett, 8, 323 (2008). http://dx.doi.org/10.1021/nl072838r. crossref(new window)

70.
Ihm K, Lim JT, Lee KJ, Kwon JW, Kang TH, Chung S, Bae S, Kim JH, Hong BH, Yeom GY. Number of graphene layers as a modulator of the open-circuit voltage of graphene-based solar cell. Appl Phys Lett, 97, 0321133 (2010). http://dx.doi.org/10.1063/1.3464319. crossref(new window)

71.
Gomez De Arco L, Zhang Y, Schlenker CW, Ryu K, Thompson ME, Zhou C. Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano, 4, 2865 (2010). http://dx.doi.org/10.1021/nn901587x. crossref(new window)

72.
Li SS, Tu KH, Lin CC, Chen CW, Chhowalla M. Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. ACS Nano, 4, 3169 (2010). http://dx.doi.org/10.1021/nn100551j. crossref(new window)

73.
Jang S, Jang H, Lee Y, Suh D, Baik S, Hee Hong B, Ahn JH. Flexible, transparent single-walled carbon nanotube transistors with grapheme electrodes. Nanotechnology, 21, 425201 (2010). http://dx.doi.org/10.1088/0957-4484/21/42/425201. crossref(new window)

74.
Lee WH, Park J, Sim SH, Jo SB, Kim KS, Hong BH, Cho K. Transparent flexible organic transistors based on monolayer graphene electrodes on plastic. Adv Mater, 23, 1752 (2011). http://dx.doi.org/10.1002/adma.201004099. crossref(new window)

75.
Gundlach DJ, Zhou L, Nichols JA, Jackson TN, Necliudov PV, Shur MS. An experimental study of contact effects in organic thin film transistors. J Appl Phys, 100, 024509 (2006). http://dx.doi.org/10.1063/1.2215132. crossref(new window)

76.
Necliudov PV, Shur MS, Gundlach DJ, Jackson TN. Contact resistance extraction in pentacene thin film transistors. Solid- State Electron, 47, 259 (2003). http://dx.doi.org/10.1016/s0038-1101(02)00204-6. crossref(new window)

77.
Blanchet GB, Fincher CR, Lefenfeld M, Rogers JA. Contact resistance in organic thin film transistors. Appl Phys Lett, 84, 296 (2004). http://dx.doi.org/10.1063/1.1639937. crossref(new window)

78.
Becerril HA, Stoltenberg RM, Tang ML, Roberts ME, Liu Z, Chen Y, Kim DH, Lee BL, Lee S, Bao Z. Fabrication and evaluation of solution-processed reduced graphene oxide electrodes for p- and n-channel bottom-contact organic thin-film transistors. ACS Nano, 4, 6343 (2010). http://dx.doi.org/10.1021/nn101369j. crossref(new window)

79.
Kim BJ, Jang H, Lee SK, Hong BH, Ahn JH, Cho JH. High-performance flexible graphene field effect transistors with ion gel gate dielectrics. Nano Lett, 10, 3464 (2010). http://dx.doi.org/10.1021/nl101559n. crossref(new window)

80.
Lee SK, Kim BJ, Jang H, Yoon SC, Lee C, Hong BH, Rogers JA, Cho JH, Ahn JH. Stretchable graphene transistors with printed dielectrics and gate electrodes. Nano Lett, 11, 4642 (2011). http://dx.doi.org/10.1021/nl202134z. crossref(new window)

81.
Kim RH, Bae MH, Kim DG, Cheng H, Kim BH, Kim DH, Li M, Wu J, Du F, Kim HS, Kim S, Estrada D, Hong SW, Huang Y, Pop E, Rogers JA. Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates. Nano Lett, 11, 3881 (2011). http://dx.doi.org/10.1021/nl202000u. crossref(new window)

82.
Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, Chen Y. Supercapacitor devices based on graphene materials. J Phys Chem C, 113, 13103 (2009). http://dx.doi.org/10.1021/jp902214f. crossref(new window)

83.
Stoller MD, Park S, Yanwu Z, An J, Ruoff RS. Graphene-based ultracapacitors. Nano Lett, 8, 3498 (2008). http://dx.doi.org/10.1021/nl802558y. crossref(new window)

84.
Yoo JJ, Balakrishnan K, Huang J, Meunier V, Sumpter BG, Srivastava A, Conway M, Mohana Reddy AL, Yu J, Vajtai R, Ajayan PM. Ultrathin planar graphene supercapacitors. Nano Lett, 11, 1423 (2011). http://dx.doi.org/10.1021/nl200225j. crossref(new window)

85.
Zhu SE, Shabani R, Rho J, Kim Y, Hong BH, Ahn JH, Cho HJ. Graphene-based bimorph microactuators. Nano Lett, 11, 977 (2011). http://dx.doi.org/10.1021/nl103618e. crossref(new window)

86.
Rogers GW, Liu JZ. Graphene actuators: quantum-mechanical and electrostatic double-layer effects. J Am Chem Soc, 133, 10858 (2011). http://dx.doi.org/10.1021/ja201887r. crossref(new window)

87.
Wang Y, Yang R, Shi Z, Zhang L, Shi D, Wang E, Zhang G. Super- elastic graphene ripples for flexible strain sensors. ACS Nano, 5, 3645 (2011). http://dx.doi.org/10.1021/nn103523t. crossref(new window)

88.
Cho J, Gao L, Tian J, Cao H, Wu W, Yu Q, Yitamben EN, Fisher B, Guest JR, Chen YP, Guisinger NP. Atomic-scale investigation of graphene grown on Cu foil and the effects of thermal annealing. ACS Nano, 5, 3607 (2011). http://dx.doi.org/10.1021/nn103338g. crossref(new window)

89.
Reddy KM, Gledhill AD, Chen CH, Drexler JM, Padture NP. High quality, transferrable graphene grown on single crystal Cu(111) thin films on basal-plane sapphire. Appl Phys Lett, 98, 113117 (2011). http://dx.doi.org/10.1063/1.3569143. crossref(new window)

90.
Chen S, Brown L, Levendorf M, Cai W, Ju SY, Edgeworth J, Li X, Magnuson CW, Velamakanni A, Piner RD, Kang J, Park J, Ruoff RS. Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. ACS Nano, 5, 1321 (2011). http://dx.doi.org/10.1021/nn103028d. crossref(new window)

91.
Bunch JS, Verbridge SS, Alden JS, Van Der Zande AM, Parpia JM, Craighead HG, McEuen PL. Impermeable atomic membranes from graphene sheets. Nano Lett, 8, 2458 (2008). http://dx.doi.org/10.1021/nl801457b. crossref(new window)

92.
Compton OC, Kim S, Pierre C, Torkelson JM, Nguyen ST. Crumpled graphene nanosheets as highly effective barrier property enhancers. Adv Mater, 22, 4759 (2010). http://dx.doi.org/10.1002/adma.201000960. crossref(new window)

93.
Nayak TR, Andersen H, Makam VS, Khaw C, Bae S, Xu X, Ee PLR, Ahn JH, Hong BH, Pastorin G, Ozyilmaz B. Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano, 5, 4670 (2011). http://dx.doi.org/10.1021/nn200500h. crossref(new window)

94.
Mohanty N, Berry V. Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett, 8, 4469 (2008). http://dx.doi.org/10.1021/nl802412n. crossref(new window)