JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Issues with the electrical characterization of graphene devices
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 13, Issue 1,  2012, pp.23-28
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2012.13.1.023
 Title & Authors
Issues with the electrical characterization of graphene devices
Lee, Byoung-Hun; Lee, Young-Gon; Jung, Uk-Jin; Kim, Yong-Hun; Hwang, Hyeon-Jun; Kim, Jin-Ju; Kang, Chang-Goo;
  PDF(new window)
 Abstract
Graphene is an attractive material for device applications, but device characteristics are very unstable because the graphene is very sensitive to environmental factors such as charges nearby the graphene, metal contacts, defects, contaminants and other adsorbates. Since the interactions between graphene and environmental factors affect the electrical characteristics of graphene devices, the interpretation of electrical characteristics as simple as current-voltage curves is non-trivial, despite the common practice of using well known electrical characterization methods that have been used in silicon MOSFET. This paper addresses major obstacles in the electrical characterization of graphene devices and offers countermeasures to improve the accuracy of electrical characterization methods.
 Keywords
graphene;electrical characterization;
 Language
English
 Cited by
1.
Preparation and characteristic of platinum catalyst deposited on boron-doped carbon nanotubes,;;

Current Applied Physics, 2012. vol.12. 5, pp.1248-1251 crossref(new window)
1.
Characterization and physical modeling of MOS capacitors in epitaxial graphene monolayers and bilayers on 6H-SiC, AIP Advances, 2016, 6, 8, 085010  crossref(new windwow)
2.
Preparation and characteristic of platinum catalyst deposited on boron-doped carbon nanotubes, Current Applied Physics, 2012, 12, 5, 1248  crossref(new windwow)
3.
Triangular-Pulse Measurement for Hysteresis of High-Performance and Flexible Graphene Field-Effect Transistors, IEEE Electron Device Letters, 2014, 35, 2, 277  crossref(new windwow)
4.
Study on future electronic device using graphene, Vacuum Magazine, 2016, 3, 1, 22  crossref(new windwow)
5.
Improvement of graphene–metal contact resistance by introducing edge contacts at graphene under metal, Applied Physics Letters, 2014, 104, 18, 183506  crossref(new windwow)
6.
Hysteresis modeling in graphene field effect transistors, Journal of Applied Physics, 2015, 117, 7, 074501  crossref(new windwow)
 References
1.
Huard B, Stander N, Sulpizio JA, Goldhaber-Gordon D. Evidence of the role of contacts on the observed electron-hole asymmetry in graphene. Phys Rev B, 78, 121402 (2008). http://dx.doi.org/10.1103/PhysRevB.78.121402. crossref(new window)

2.
Wehling TO, Katsnelson MI, Lichtenstein AI. Adsorbates on graphene: impurity states and electron scattering. Chem Phys Lett, 476, 125 (2009). http://dx.doi.org/10.1016/J.cplett.2009.06.005. crossref(new window)

3.
Sui Y, Low T, Lundstrom M, Appenzeller J. Signatures of disorder in the minimum conductivity of graphene. Nano Lett, 11, 1319 (2011). http://dx.doi.org/10.1021/nl104399z. crossref(new window)

4.
Murali R, Yang Y, Brenner K, Beck T, Meindl JD. Breakdown current density of graphene nanoribbons. Appl Phys Lett, 94, 243114 (2009). http://dx.doi.org/10.1063/1.3147183. crossref(new window)

5.
Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438, 197 (2005). http://dx.doi.org/10.1038/nature04233. crossref(new window)

6.
Lin YM, Avouris P. Strong suppression of electrical noise in bilayer graphene nanodevices. Nano Lett, 8, 2119 (2008). http://dx.doi.org/10.1021/nl080241l. crossref(new window)

7.
Geim AK, Novoselov KS. The rise of graphene. Nature Mater, 6, 183 (2007). http://dx.doi.org/10.1038/nmat1849. crossref(new window)

8.
Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 146, 351 (2008). http://dx.doi.org/10.1016/j.ssc.2008.02.024. crossref(new window)

9.
Schwierz F. Graphene transistors. Nature Nanotechnol, 5, 487 (2010). http://dx.doi.org/10.1038/nnano.2010.89. crossref(new window)

10.
Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK. The electronic properties of graphene. Rev Mod Phys, 81, 109 (2009). http://dx.doi.org/10.1103/RevModPhys.81.109. crossref(new window)

11.
Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E. Controlling the electronic structure of bilayer graphene. Science, 313, 951 (2006). http://dx.doi.org/10.1126/science.1130681. crossref(new window)

12.
Ito J, Nakamura J, Natori A. Semiconducting nature of the oxygenadsorbed graphene sheet. J Appl Phys, 103, 113712 (2008). http://dx.doi.org/10.1063/1.2939270. crossref(new window)

13.
Kang CG, Kang JW, Lee SK, Lee SY, Cho CH, Hwang HJ, Lee YG, Heo J, Chung HJ, Yang H, Seo S, Park SJ, Ko KY, Ahn J, Lee BH. Characteristics of CVD graphene nanoribbon formed by a ZnO nanowire hardmask. Nanotechnology, 22, 295201 (2011). http://dx.doi.org/10.1088/0957-4484/22/29/295201. crossref(new window)

14.
Lee YG, Kang CG, Jung UJ, Kim JJ, Hwang HJ, Chung HJ, Seo S, Choi R, Lee BH. Fast transient charging at the graphene/ SiO2 interface causing hysteretic device characteristics. Appl Phys Lett, 98, 183508 (2011). http://dx.doi.org/10.1063/1.3588033. crossref(new window)

15.
Lohmann T, Von Klitzing K, Smet JH. Four-Terminal magneto-Transport in graphene p-n junctions created by spatially selective doping. Nano Lett, 9, 1973 (2009). http://dx.doi.org/10.1021/nl900203n. crossref(new window)

16.
Farmer DB, Roksana GM, Perebeinos V, Lin YM, Tuievski GS, Tsang JC, Avouris P. Chemical doping and electron-hole conduction asymmetry in graphene devices. Nano Lett, 9, 388 (2009). http://dx.doi.org/10.1021/nl803214a. crossref(new window)

17.
Parrish KN, Akinwande D. Impact of contact resistance on the transconductance and linearity of graphene transistors. Appl Phys Lett, 98, 183505 (2011). http://dx.doi.org/10.1063/1.3582613. crossref(new window)

18.
Huang BC, Zhang M, Wang Y, Woo J. Contact resistance in topgated graphene field-effect transistors. Appl Phys Lett, 99, 032107 (2011). http://dx.doi.org/10.1063/1.3614474. crossref(new window)

19.
Xia F, Perebeinos V, Lin YM, Wu Y, Avouris P. The origins and limits of metal-graphene junction resistance. Nature Nanotechnol, 6, 179 (2011). http://dx.doi.org/10.1038/nnano.2011.6. crossref(new window)

20.
Stander N, Huard B, Goldhaber-Gordon D. Evidence for Klein tunneling in graphene p-n junctions. Phys Rev Lett, 102, 026807 (2009). http://dx.doi.org/10.1103/PhysRevLett.102.026807. crossref(new window)

21.
Xia J, Chen F, Li J, Tao N. Measurement of the quantum capacitance of graphene. Nature Nanotechnol, 4, 505 (2009). http://dx.doi.org/10.1038/nnano.2009.177. crossref(new window)

22.
Xu H, Zhang Z, Peng LM. Measurements and microscopic model of quantum capacitance in graphene. Appl Phys Lett, 98, 133122 (2011). http://dx.doi.org/10.1063/1.3574011. crossref(new window)

23.
Liao ZM, Han BH, Zhou YB, Yu DP. Hysteresis reversion in graphene field-effect transistors. J Chem Phys, 133, 044703 (2010). http://dx.doi.org/10.1063/1.3460798. crossref(new window)

24.
Shi Y, Dong X, Chen P, Wang J, Li LJ. Effective doping of singlelayer graphene from underlying SiO2 substrates. Phys Rev B, 79, 115402 (2009). http://dx.doi.org/10.1103/PhysRevB.79.115402. crossref(new window)

25.
Jung I, Dikin D, Park S, Cai W, Mielke SL, Ruoff RS. Effect of water vapor on electrical properties of individual reduced graphene oxide sheets. J Phys Chem C, 112, 20264 (2008). http://dx.doi.org/10.1021/jp807525d. crossref(new window)

26.
Wang H, Wu Y, Cong C, Shang J, Yu T. Hysteresis of electronic transport in graphene transistors. ACS Nano, 4, 7221 (2010). http://dx.doi.org/10.1021/nn101950n. crossref(new window)

27.
Liu Z, Bol AA, Haensch W. Large-scale graphene transistors with enhanced performance and reliability based on interface engineering by phenylsilane self-assembled monolayers. Nano Lett, 11, 523 (2011). http://dx.doi.org/10.1021/nl1033842. crossref(new window)

28.
Lee BH, Young C, Choi R, Sim JH, Bersuker G. Transient charging and relaxation in high-k gate dielectrics and their implications. Jpn J Appl Phys, 44, 2415 (2005). http://dx.doi.org/10.1143/jjap.44.2415. crossref(new window)

29.
Bersuker G, Zeitzoff P, Sim JH, Lee BH, Choi R, Brown G, Young CD. Mobility evaluation in transistors with charge-trapping gate dielectrics. Appl Phys Lett, 87, 042905 (2005). http://dx.doi.org/10.1063/1.1995956. crossref(new window)

30.
Ng KK, Lynch WT. Analysis of the gate-voltage-dependent series resistance of MOSFET's. IEEE Trans Electr Dev, ED-33, 965 (1986). http://dx.doi.org/10.1109/T-ED.1986.22602. crossref(new window)

31.
Hu GJ, Chang C, Chia YT. Gate-voltage-dependent effective channel length and series resistance of LDD MOSFET's. IEEE Trans Electr Dev, ED-34, 2469 (1987). http://dx.doi.org/10.1109/TED.1987.23337.

32.
Sundaram RS, Steiner M, Chiu HY, Engel M, Bol AA, Krupke R, Burghard M, Kern K, Avouris P. The graphene-gold interface and its implications for nanoelectronics. Nano Lett, 11, 3833 (2011). http://dx.doi.org/10.1021/nl201907u. crossref(new window)

33.
Ponomarenko LA, Yang R, Mohiuddin TM, Katsnelson MI, Novoselov KS, Morozov SV, Zhukov AA, Schedin F, Hill EW, Geim AK. Effect of a high-$\kappa$ environment on charge carrier mobility in graphene. Phys Rev Lett, 102, 206603 (2009). http://dx.doi.org/10.1103/PhysRevLett.102.206603. crossref(new window)

34.
Su LT, Chung JE, Antoniadis DA, Goodson KE, Flik MI. Measurement and modeling of self-heating in SOI nMOSFET's. IEEE Trans Electr Dev, 41, 69 (1994). http://dx.doi.org/10.1109/16.259622. crossref(new window)

35.
Hwang EH, Adam S, Sarma SD. Carrier transport in two-dimensional graphene layers. Phys Rev Lett, 98, 186806 (2007). http://dx.doi.org/10.1103/PhysRevLett.98.186806. crossref(new window)