Advanced SearchSearch Tips
Raman spectroscopy study on the reactions of UV-generated oxygen atoms with single-layer graphene on SiO2/Si substrates
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 13, Issue 1,  2012, pp.34-38
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2012.13.1.034
 Title & Authors
Raman spectroscopy study on the reactions of UV-generated oxygen atoms with single-layer graphene on SiO2/Si substrates
Ahn, Gwang-Hyun; Kim, Hye-Ri; Hong, Byung-Hee; Ryu, Sun-Min;
  PDF(new window)
Successful application of graphene requires development of various tools for its chemical modification. In this paper, we present a Raman spectroscopic investigation of the effects of UV light on single layer graphene with and without the presence of molecules. The UV emission from a low pressure Hg lamp photolyzes molecules into O atoms, which are known to form epoxy on the basal plane of graphene. The resulting surface epoxy groups were identified by the disorder-related Raman D band. It was also found that adhesive residues present in the graphene samples prepared by micro-mechanical exfoliation using adhesive tape severely interfere with the O atom reaction with graphene. The UV-induced reaction was also successfully applied to chemical vapor deposition-grown graphene. Since the current method can be readily carried out in ambient air only with UV light, it will be useful in modifying the surfaces of graphene and related materials.
graphene;Raman spectroscopy;oxygen;UV light;oxidation;
 Cited by
Defect-engineered graphene chemical sensors with ultrahigh sensitivity, Physical Chemistry Chemical Physics, 2016, 18, 21, 14198  crossref(new windwow)
Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field in atomically thin carbon films. Science, 306, 666 (2004). crossref(new window)

Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK. Two-dimensional atomic crystals. Proc Natl Acad Sci U S A, 102, 10451 (2005). crossref(new window)

Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotechnol, 3, 270 (2008). crossref(new window)

Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Balakrishnan J, Lei T, Ri Kim H, Song YI, Kim YJ, Kim KS, Ozyilmaz B, Ahn JH, Hong BH, Iijima S. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnol, 5, 574 (2010). crossref(new window)

Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Ahn JH, Kim P, Choi JY, Hong BH. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457, 706 (2009). crossref(new window)

Han MY, Ozyilmaz B, Zhang Y, Kim P. Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett, 98, 206805 (2007). crossref(new window)

Wakabayashi K, Pierre C, Diking DA, Ruoff RS, Ramanathan T, Catherine Brinson L, Torkelson JM. Polymer--graphite nanocomposites: effective dispersion and major property enhancement via solid-state shear pulverization. Macromolecules, 41, 1905 (2008). crossref(new window)

Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS. Detection of individual gas molecules adsorbed on graphene. Nature Mater, 6, 652 (2007). crossref(new window)

Casiraghi C, Pisana S, Novoselov KS, Geim AK, Ferrari AC. Raman fingerprint of charged impurities in graphene. Appl Phys Lett, 91, 233108 (2007). crossref(new window)

Ryu S, Liu L, Berciaud S, Yu YJ, Liu H, Kim P, Flynn GW, Brus LE. Atmospheric oxygen binding and hole doping in deformed graphene on a SiO2 substrate. Nano Lett, 10, 4944 (2010). crossref(new window)

Wallace PR. The band theory of graphite. Phys Rev, 71, 622 (1947). crossref(new window)

Liu L, Ryu S, Tomasik MR, Stolyarova E, Jung N, Hybertsen MS, Steigerwald ML, Brus LE, Flynn GW. Graphene oxidation: thickness- dependent etching and strong chemical doping. Nano Lett, 8, 1965 (2008). crossref(new window)

Ryu S, Han MY, Maultzsch J, Heinz TF, Kim P, Steigerwald ML, Brus LE. Reversible basal plane hydrogenation of graphene. Nano Lett, 8, 4597 (2008). crossref(new window)

Elias DC, Nair RR, Mohiuddin TMG, Morozov SV, Blake P, Halsall MP, Ferrari AC, Boukhvalov DW, Katsnelson MI, Geim AK, Novoselov KS. Control of graphene's properties by reversible hydrogenation: evidence for graphane. Science, 323, 610 (2009). crossref(new window)

Bekyarova E, Itkis ME, Ramesh P, Berger C, Sprinkle M, De Heer WA, Haddon RC. Chemical modification of epitaxial graphene: spontaneous grafting of aryl groups. J Am Chem Soc, 131, 1336 (2009). crossref(new window)

Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen ST, Ruoff RS. Preparation and characterization of graphene oxide paper. Nature, 448, 457 (2007). crossref(new window)

Liu H, Ryu S, Chen Z, Steigerwald ML, Nuckolls C, Brus LE. Photochemical reactivity of graphene. J Am Chem Soc, 131, 17099 (2009). crossref(new window)

Ferrari AC. Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun, 143, 47 (2007). crossref(new window)

Song J, Ko TY, Ryu S. Raman spectroscopy study of annealinginduced effects on graphene prepared by micromechanical exfoliation. Bull Korean Chem Soc, 31, 2679 (2010). crossref(new window)

Reader J, Sansonetti CJ, Bridges JM. Irradiances of spectral lines in mercury pencil lamps. Appl Opt, 35, 78 (1996). crossref(new window)

Okabe H. Photochemistry of Small Molecules, Wiley, New York (1978).

Barinov A, Malcioglu OB, Fabris S, Sun T, Gregoratti L, Dalmiglio M, Kiskinova M. Initial stages of oxidation on graphitic surfaces: photoemission study and density functional theory calculations. J Phys Chem C, 113, 9009 (2009). crossref(new window)

Jiang DE, Sumpter BG, Dai S. How do aryl groups attach to a graphene sheet? J Phys Chem B, 110, 23628 (2006). crossref(new window)

Sharma R, Baik JH, Perera CJ, Strano MS. Anomalously large reactivity of single graphene layers and edges toward electron transfer chemistries. Nano Lett, 10, 398 (2010). crossref(new window)

Lee WH, Park J, Sim SH, Jo SB, Kim KS, Hong BH, Cho K. Transparent flexible organic transistors based on monolayer graphene electrodes on plastic. Adv Mater, 23, 1752 (2011). crossref(new window)

Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 324, 1312 (2009). crossref(new window)