JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Effect of Fe3O4 loading on the conductivities of carbon nanotube/chitosan composite films
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 13, Issue 2,  2012, pp.126-129
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2012.13.2.126
 Title & Authors
Effect of Fe3O4 loading on the conductivities of carbon nanotube/chitosan composite films
Marroquin, Jason; Kim, H.J.; Jung, Dong-Ho; Rhee, Kyong-Yop;
  PDF(new window)
 Abstract
Nanocomposite films were made by a simple solution casting method in which multi-walled carbon nanotubes (MWCNT) and magnetite nanoparticles () were used as dopant materials to enhance the electrical conductivity of chitosan nanocomposite films. The films contained fixed CNT concentrations (5, 8, and 10 wt%) and varying content. It was determined that a 1:1 ratio of CNT to provided optimal conductivity according to dopant material loading. X-ray diffraction patterns for the nanocomposite films, were determined to investigate their chemical and phase composition, revealed that nanoparticle agglomeration occurred at high loadings, which hindered the synergistic effect of the doping materials on the conductivity of the films.
 Keywords
nanocomposite films;multi-walled carbon nanotubes;magnetite nanoparticles;electrical conductivity;
 Language
English
 Cited by
1.
Synthesis, characterization and magnetic properties of Fe3O4 doped chitosan polymer, Journal of Magnetism and Magnetic Materials, 2015, 373, 53  crossref(new windwow)
2.
Synthesis and dose interval dependent hepatotoxicity evaluation of intravenously administered polyethylene glycol-8000 coated ultra-small superparamagnetic iron oxide nanoparticle on Wistar rats, Environmental Toxicology and Pharmacology, 2015, 39, 2, 727  crossref(new windwow)
3.
Electro-Magnetic Polyfuran/Fe3O4Nanocomposite: Synthesis, Characterization, Antioxidant Activity, and Its Application as a Biosensor, International Journal of Polymeric Materials and Polymeric Biomaterials, 2015, 64, 4, 175  crossref(new windwow)
4.
Magnetically recoverable ZrO2/Fe3O4/chitosan nanomaterials for enhanced sunlight driven photoreduction of carcinogenic Cr(vi) and dechlorination & mineralization of 4-chlorophenol from simulated waste water, RSC Adv., 2016, 6, 16, 13251  crossref(new windwow)
5.
γ-Fe2O3 magnetic nanoparticle functionalized with carboxylated multi walled carbon nanotube: Synthesis, characterization, analytical and biomedical application, Journal of Magnetism and Magnetic Materials, 2016, 401, 949  crossref(new windwow)
6.
Surface functionalization of multiwalled carbon nanotubes with chitosan and magnesium oxide nanoparticles by microwave-assisted synthesis, Polymer Composites, 2014, 35, 10, 2050  crossref(new windwow)
7.
Synthesis of Novel Conductive Poly(p-phenylenediamine)/ Fe3O4Nanocomposite via Emulsion Polymerization and Investigation of Antioxidant Activity, Advances in Polymer Technology, 2014, 33, 1, n/a  crossref(new windwow)
8.
Removal of Cr (VI) from aqueous solutions using chitosan/MWCNT/Fe3O4 composite nanofibers-batch and column studies, Chemical Engineering Journal, 2016, 284, 557  crossref(new windwow)
9.
Chitosan nanocomposite films: Enhanced electrical conductivity, thermal stability, and mechanical properties, Carbohydrate Polymers, 2013, 92, 2, 1783  crossref(new windwow)
10.
SPION/β-cyclodextrin core–shell nanostructures for oil spill remediation and organic pollutant removal from waste water, Chemical Engineering Journal, 2015, 280, 175  crossref(new windwow)
11.
Kinetic and thermodynamic studies of methotrexate adsorption on chitosan-modified magnetic multi-walled carbon nanotubes, Monatshefte für Chemie - Chemical Monthly, 2016  crossref(new windwow)
12.
Antimicrobial characteristics of N-halaminated chitosan salt/cotton knit composites, Journal of Industrial and Engineering Chemistry, 2014, 20, 4, 1476  crossref(new windwow)
13.
Fabrication of chitosan/MWCNT nanocomposite as a carrier for 5-fluorouracil and a study of the cytotoxicity of 5-fluorouracil encapsulated nanocomposite towards MCF-7, Polymer Bulletin, 2016, 73, 11, 3221  crossref(new windwow)
 References
1.
Sahoo NG, Rana S, Cho JW, Li L, Chan SH. Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci, 35, 837 (2010). http://dx.doi.org/10.1016/j.progpolymsci.2010.03.002. crossref(new window)

2.
Jin F, Park S. A review of the preparation of carbon nanotubesreinforced polymer composites. Carbon Lett, 12, 57 (2011). http:// dx.doi.org/10.5714/CL.2011.12.2.057. crossref(new window)

3.
Kwon J, Kim H. Comparison of the properties of waterborne polyurethane/multiwalled carbon nanotube and acid-treated multiwalled carbon nanotube composites prepared by in situ polymerization. J Polym Sci, Part A: Polym Chem, 43, 3973 (2005). http:// dx.doi.org/10.1002/pola.20897. crossref(new window)

4.
Wu ZP, Li MM, Hu YY, Li YS, Wang ZX, Yin YH, Chen YS, Zhou X. Electromagnetic interference shielding of carbon nanotube macrofilms. Scripta Mater, 64, 809 (2011). http://dx.doi.org/10.1016/j.scriptamat.2011.01.002. crossref(new window)

5.
Ajayan PM, Schadler LS, Giannaris C, Rubio A. Single-walled carbon nanotube-polymer composites: strength and weakness. Adv Mater, 12, 750 (2000). http://dx.doi.org/10.1002/(sici)1521-4095(200005)12:10<750::aid-adma750>3.0.co;2-6. crossref(new window)

6.
Ma PC, Siddiqui NA, Marom G, Kim J-K. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Composites A, 41, 1345 (2010). http://dx.doi.org/10.1016/j.compositesa.2010.07.003. crossref(new window)

7.
Fernandes SCM, Freire CSR, Silvestre AJD, Pascoal Neto C, Gandini A. Novel materials based on chitosan and cellulose. Polym Int, 60, 875 (2011). http://dx.doi.org/10.1002/pi.3024. crossref(new window)

8.
Pillai CKS, Paul W, Sharma CP. Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci, 34, 641 (2009). http://dx.doi.org/10.1016/j.progpolymsci.2009.04.001. crossref(new window)

9.
Zhao Q, Gan Z, Zhuang Q. Electrochemical sensors based on carbon nanotubes. Electroanalysis, 14, 1609 (2002). http://dx.doi. org/10.1002/elan.200290000. crossref(new window)

10.
Yan XX, Pang DW, Lu ZX, Lu JQ, Tong H. Electrochemical behavior of l-dopa at single-wall carbon nanotube-modified glassy carbon electrodes. J Electroanal Chem, 569, 47 (2004). http:// dx.doi.org/10.1016/j.jelechem.2004.02.011. crossref(new window)

11.
Luo XL, Xu JJ, Wang JL, Chen HY. Electrochemically deposited nanocomposite of chitosan and carbon nanotubes for biosensor application. Chem Commun, 2169 (2005). http://dx.doi.org/10.1039/B419197H. crossref(new window)

12.
Santos AS, Pereira AC, Durán N, Kubota LT. Amperometric biosensor for ethanol based on co-immobilization of alcohol dehydrogenase and Meldola's Blue on multi-wall carbon nanotube. Electrochim Acta, 52, 215 (2006). http://dx.doi.org/10.1016/j.electacta.2006.04.060. crossref(new window)

13.
Wang J. Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis, 17, 7 (2005). http://dx.doi.org/10.1002/elan.200403113. crossref(new window)

14.
Liu Y, Tang J, Chen X, Xin JH. Decoration of carbon nanotubes with chitosan. Carbon, 43, 3178 (2005). http://dx.doi.org/10.1016/j.carbon.2005.06.020. crossref(new window)

15.
Tkac J, Whittaker JW, Ruzgas T. The use of single walled carbon nanotubes dispersed in a chitosan matrix for preparation of a galactose biosensor. Biosensors Bioelectron, 22, 1820 (2007). http://dx.doi.org/10.1016/j.bios.2006.08.014. crossref(new window)

16.
Foygel M, Morris RD, Anez D, French S, Sobolev VL. Theoretical and computational studies of carbon nanotube composites and suspensions: electrical and thermal conductivity. Phys Rev B, 71, 104201 (2005). http://dx.doi.org/10.1103/PhysRevB.71.104201. crossref(new window)

17.
Wescott JT, Kung P, Maiti A. Conductivity of carbon nanotube polymer composites. Appl Phys Lett, 90, 033116 (2007). http:// dx.doi.org/10.1063/1.2432237. crossref(new window)

18.
Lau C, Cooney MJ, Atanassov P. Conductive macroporous composite chitosan−carbon nanotube scaffolds. Langmuir, 24, 7004 (2008). http://dx.doi.org/10.1021/la8005597. crossref(new window)

19.
Wang SF, Shen L, Zhang WD, Tong YJ. Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromolecules, 6, 3067 (2005). http://dx.doi.org/10.1021/bm050378v. crossref(new window)