JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Comprehensive review on synthesis and adsorption behaviors of graphene-based materials
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 13, Issue 2,  2012, pp.73-87
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2012.13.2.073
 Title & Authors
Comprehensive review on synthesis and adsorption behaviors of graphene-based materials
Lee, Seul-Yi; Park, Soo-Jin;
  PDF(new window)
 Abstract
Graphene is the thinnest known materials in the universe and the strongest ever measured. Graphene has emerged as an exotic material of the 21st century and received world-wide attention due to its exceptional charge transport, thermal, optical, mechanical, and adsorptive properties. Recently, graphene and its derivatives are considered promising candidates as adsorbent for storage, capture, etc. and as the sensors for detecting individual gas molecule. The main purpose of this review is to comprehensive the synthesis method of graphene and to brief the adsorption behaviors of graphene and its derivatives.
 Keywords
graphene;synthesis method of graphene;adsorption behaviors;
 Language
English
 Cited by
1.
Synthesis and electrochemical analysis of Pt-loaded, polypyrrole-decorated, graphene-composite electrodes,;;

Carbon letters, 2013. vol.14. 2, pp.117-120 crossref(new window)
2.
Effect of chemically reduced graphene oxide on epoxy nanocomposites for flexural behaviors,;;;;;

Carbon letters, 2014. vol.15. 1, pp.67-70 crossref(new window)
3.
Electrochemical Performance of N-Enriched Polyvinylpyrrolidone-Based Porous Carbons,;;

Macromolecular research, 2014. vol.22. 4, pp.457-460 crossref(new window)
4.
Silver-coated graphene electrode produced by electrolytic deposition for electrochemical behaviors,;;;;

Current Applied Physics, 2014. vol.14. 9, pp.1212-1215 crossref(new window)
5.
Preparation of Surface Functionalized Graphene Oxide Nanosheet and Its Multicomponent Dye Removal Ability from Wastewater,;;;

Fibers and Polymers, 2015. vol.16. 5, pp.1035-1047 crossref(new window)
6.
Effect of nickel on hydrogen storage behaviors of carbon aerogel hybrid,;;

Carbon letters, 2015. vol.16. 4, pp.281-285 crossref(new window)
1.
Structure and energetics of graphene oxide isomers: ab initio thermodynamic analysis, Nanoscale, 2015, 7, 40, 17055  crossref(new windwow)
2.
Silver-coated graphene electrode produced by electrolytic deposition for electrochemical behaviors, Current Applied Physics, 2014, 14, 9, 1212  crossref(new windwow)
3.
Fabrication of Poly(lactic acid)/Graphene Oxide Foams with Highly Oriented and Elongated Cell Structure via Unidirectional Foaming Using Supercritical Carbon Dioxide, Industrial & Engineering Chemistry Research, 2015, 54, 2, 758  crossref(new windwow)
4.
Wrinkling and thermal conductivity of one graphene sheet under shear, Molecular Simulation, 2015, 41, 4, 231  crossref(new windwow)
5.
Preparation and electrochemical analysis of graphene/polyaniline composites prepared by aniline polymerization, Research on Chemical Intermediates, 2014, 40, 7, 2519  crossref(new windwow)
6.
A functional assembly of SiO2 nanospheres/graphene oxide composites, Materials Letters, 2015, 142, 75  crossref(new windwow)
7.
Graphene oxide nanosheet: preparation and dye removal from binary system colored wastewater, Desalination and Water Treatment, 2015, 56, 9, 2382  crossref(new windwow)
8.
Graphene-based materials: Synthesis and gas sorption, storage and separation, Progress in Materials Science, 2015, 69, 1  crossref(new windwow)
9.
Synthesis, characterization, and KOH activation of nanoporous carbon for increasing CO2 adsorption capacity, Research on Chemical Intermediates, 2014, 40, 7, 2535  crossref(new windwow)
10.
Study on optical interference effect of graphene oxide films on SiO2 and Si3N4 dielectric films, Research on Chemical Intermediates, 2014, 40, 7, 2477  crossref(new windwow)
11.
Preparation of surface functionalized graphene oxide nanosheet and its multicomponent dye removal ability from wastewater, Fibers and Polymers, 2015, 16, 5, 1035  crossref(new windwow)
12.
High strength metallurgical graphene for hydrogen storage nanocomposites, Vacuum, 2016, 129, 79  crossref(new windwow)
13.
Electrochemical performance of N-enriched polyvinylpyrrolidone-based porous carbons, Macromolecular Research, 2014, 22, 4, 457  crossref(new windwow)
14.
Production of Pt nanoparticles-supported chelating group-modified graphene for direct methanol fuel cells, Research on Chemical Intermediates, 2014, 40, 7, 2509  crossref(new windwow)
15.
Effect of nickel on hydrogen storage behaviors of carbon aerogel hybrid, Carbon letters, 2015, 16, 4, 281  crossref(new windwow)
16.
Mechanical, Thermal, and Electrical Properties of Graphene-Epoxy Nanocomposites—A Review, Polymers, 2016, 8, 8, 281  crossref(new windwow)
17.
Effect of chemically reduced graphene oxide on epoxy nanocomposites for flexural behaviors, Carbon letters, 2014, 15, 1, 67  crossref(new windwow)
18.
Synthesis and electrochemical analysis of Pt-loaded, polypyrrole-decorated, graphene-composite electrodes, Carbon letters, 2013, 14, 2, 117  crossref(new windwow)
 References
1.
Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science, 306, 666 (2004). http://dx.doi.org/10.1126/science.1102896. crossref(new window)

2.
Tkachev S, Buslaeva E, Gubin S. Graphene: a novel carbon nanomaterial. Inorg Mater, 47, 1 (2011). http://dx.doi.org/10.1134/s0020168511010134. crossref(new window)

3.
Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S. Graphene based materials: past, present and future. Prog Mater Sci, 56, 1178(2011). http://dx.doi.org/10.1016/j.pmatsci.2011.03.003. crossref(new window)

4.
Novoselov KS, Jiang Z, Zhang Y, Morozov SV, Stormer HL, Zeitler U, Maan JC, Boebinger GS, Kim P, Geim AK. Room-temperature quantum Hall effect in graphene. Science, 315, 1379 (2007). http:// dx.doi.org/10.1126/science.1137201. crossref(new window)

5.
Ritter KA, Lyding JW. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat Mater, 8, 235 (2009). http://dx.doi.org/10.1038/nmat2378. crossref(new window)

6.
Ubbelohde AR, Lewis FA. Graphite and its Crystal Compounds, Clarendon Press, Oxford (1960).

7.
Geim AK, Novoselov KS. The rise of graphene. Nat Mater, 6, 183 (2007). http://dx.doi.org/10.1038/nmat1849. crossref(new window)

8.
Chung DDL. Review graphite. J Mater Sci, 37, 1475 (2002). http:// dx.doi.org/10.1023/a:1014915307738. crossref(new window)

9.
Stoller MD, Park S, Zhu Y, An J, Ruoff RS. Graphene-based ultracapacitors. Nano Lett, 8, 3498 (2008). http://dx.doi.org/10.1021/nl802558y. crossref(new window)

10.
Bunch JS, van der Zande AM, Verbridge SS, Frank IW, Tanenbaum DM, Parpia JM, Craighead HG, McEuen PL. Electromechanical resonators from graphene sheets. Science, 315, 490 (2007). http://dx.doi.org/10.1126/science.1136836. crossref(new window)

11.
Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN. Superior thermal conductivity of single-layer graphene. Nano Lett, 8, 902 (2008). http://dx.doi.org/10.1021/nl0731872. crossref(new window)

12.
Li X, Wang X, Zhang L, Lee S, Dai H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science, 319, 1229 (2008). http://dx.doi.org/10.1126/science.1150878. crossref(new window)

13.
Shenderova OA, Zhirnov VV, Brenner DW. Carbon nanostructures. Crit Rev Solid State Mater Sci, 27, 227 (2002). http://dx.doi. org/10.1080/10408430208500497. crossref(new window)

14.
Krishnan A, Dujardin E, Treacy MMJ, Hugdahl J, Lynum S, Ebbesen TW. Graphitic cones and the nucleation of curved carbon surfaces. Nature, 388, 451 (1997). crossref(new window)

15.
Nagashima A, Nuka K, Itoh H, Ichinokawa T, Oshima C, Otani S. Electronic states of monolayer graphite formed on TiC(111) surface. Surf Sci, 291, 93 (1993). http://dx.doi.org/10.1016/0039-6028(93)91480-d. crossref(new window)

16.
Forbeaux I, Themlin JM, Debever JM. Heteroepitaxial graphite on 6H-SiC(0001): interface formation through conduction-band electronic structure. Phys Rev B, 58, 16396 (1998). http://dx.doi. org/10.1103/PhysRevB.58.16396. crossref(new window)

17.
Wu J, Becerril HA, Bao Z, Liu Z, Chen Y, Peumans P. Organic solar cells with solution-processed graphene transparent electrodes. Appl Phys Lett, 92, 263302 (2008). http://dx.doi. org/10.1063/1.2924771. crossref(new window)

18.
Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E. Controlling the electronic structure of bilayer graphene. Science, 313, 951 (2006). http://dx.doi.org/10.1126/science.1130681. crossref(new window)

19.
de Heer WA, Berger C, Wu X, First PN, Conrad EH, Li X, Li T, Sprinkle M, Hass J, Sadowski ML, Potemski M, Martinez G. Epitaxial graphene. Solid State Commun, 143, 92 (2007). http:// dx.doi.org/10.1016/j.ssc.2007.04.023. crossref(new window)

20.
Emtsev KV, Bostwick A, Horn K, Jobst J, Kellogg GL, Ley L, McChesney JL, Ohta T, Reshanov SA, Rohrl J, Rotenberg E, Schmid AK, Waldmann D, Weber HB, Seyller T. Towards wafersize graphene layers by atmospheric pressure graphitization of silicon carbide. Nat Mater, 8, 203 (2009). http://dx.doi.org/10.1038/nmat2382. crossref(new window)

21.
Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457, 706 (2009). http://dx.doi.org/10.1038/nature07719. crossref(new window)

22.
Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett, 9, 30 (2008). http://dx.doi.org/10.1021/nl801827v. crossref(new window)

23.
Yu Q, Lian J, Siriponglert S, Li H, Chen YP, Pei S-S. Graphene segregated on Ni surfaces and transferred to insulators. Appl Phys Lett, 93, 113103 (2008). http://dx.doi.org/10.1063/1.2982585. crossref(new window)

24.
Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 324, 1312 (2009). http://dx.doi.org/10.1126/science.1171245. crossref(new window)

25.
Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA. Electronic confinement and coherence in patterned epitaxial graphene. Science, 312, 1191 (2006). http://dx.doi.org/10.1126/science. 1125925. crossref(new window)

26.
Hass J, Heer WAd, Conrad EH. The growth and morphology of epitaxial multilayer graphene. J Phys: Condens Matter, 20, 323202 (2008). http://dx.doi.org/10.1088/0953-8984/20/32/323202. crossref(new window)

27.
Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Balakrishnan J, Lei T, Ri Kim H, Song YI, Kim YJ, Kim KS, Ozyilmaz B, Ahn JH, Hong BH, Iijima S. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol, 5, 574 (2010). http://dx.doi.org/10.1038/nnano.2010.132. crossref(new window)

28.
Berger C, Song Z, Li T, Li X, Ogbazghi AY, Feng R, Dai Z, Marchenkov AN, Conrad EH, First PN, de Heer WA. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphenebased nanoelectronics. J Phys Chem B, 108, 19912 (2004). http:// dx.doi.org/10.1021/jp040650f. crossref(new window)

29.
Jauregui LA, Cao H, Wu W, Yu Q, Chen YP. Electronic properties of grains and grain boundaries in graphene grown by chemical vapor deposition. Solid State Commun, 151, 1100 (2011). http:// dx.doi.org/10.1016/j.ssc.2011.05.023. crossref(new window)

30.
Cao H, Yu Q, Jauregui LA, Tian J, Wu W, Liu Z, Jalilian R, Benjamin DK, Jiang Z, Bao J, Pei SS, Chen YP. Electronic transport in chemical vapor deposited graphene synthesized on Cu: quantum Hall effect and weak localization. Appl Phys Lett, 96, 122106 (2010). http://dx.doi.org/10.1063/1.3371684. crossref(new window)

31.
Eizenberg M, Blakely JM. Carbon monolayer phase condensation on Ni(111). Surf Sci, 82, 228 (1979). http://dx.doi. org/10.1016/0039-6028(79)90330-3. crossref(new window)

32.
Isett LC, Blakely JM. Segregation isosteres for carbon at the (100) surface of nickel. Surf Sci, 58, 397 (1976). http://dx.doi. org/10.1016/0039-6028(76)90478-7. crossref(new window)

33.
Somani PR, Somani SP, Umeno M. Planer nano-graphenes from camphor by CVD. Chem Phys Lett, 430, 56 (2006). http://dx.doi. org/10.1016/j.cplett.2006.06.081. crossref(new window)

34.
Chen YP, Yu Q. Nanomaterials: graphene rolls off the press. Nat Nanotechnol, 5, 559 (2010). http://dx.doi.org/10.1038/nnano. 2010.158. crossref(new window)

35.
Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S. The structure of suspended graphene sheets. Nature, 446, 60 (2007). http://dx.doi.org/10.1038/nature05545. crossref(new window)

36.
Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 146, 351 (2008). http://dx.doi. org/10.1016/j.ssc.2008.02.024. crossref(new window)

37.
Bolotin KI, Sikes KJ, Hone J, Stormer HL, Kim P. Temperature- dependent transport in suspended graphene. Phys Rev Lett, 101, 096802 (2008). http://dx.doi.org/10.1103/PhysRevLett.101.096802. crossref(new window)

38.
Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK. Two-dimensional atomic crystals. Proc Natl Acad Sci USA, 102, 10451 (2005). http://dx.doi.org/10.1073/pnas.0502848102. crossref(new window)

39.
Park SJ. van der Waals interaction at surfaces. In: Somasundaran P, ed. Encyclopedia of Surface and Colloid Science. 2nd ed., Taylor & Francis, New York, 5570 (2006).

40.
Park SJ. Long-range force contributions to surface dynamics. In: Hsu JP, ed. Interfacial Forces and Fields: Theory and Applications, Marcel Dekker, New York, 385 (1999).

41.
Li X, Cai W, Colombo L, Ruoff RS. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett, 9, 4268 (2009). http://dx.doi.org/10.1021/nl902515k. crossref(new window)

42.
Park SJ, Seo MK. Interface Science and Composites, Academic Press, Boston (2011).

43.
Hummers WS Jr, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc, 80, 1339 (1958). http://dx.doi.org/10.1021/ja01539a017. crossref(new window)

44.
Allen MJ, Tung VC, Kaner RB. Honeycomb carbon: a review of graphene. Chem Rev, 110, 132 (2009). http://dx.doi.org/10.1021/cr900070d. crossref(new window)

45.
Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, Mc- Govern IT, Holland B, Byrne M, Gun'Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol, 3, 563 (2008). http://dx.doi.org/10.1038/nnano.2008.215. crossref(new window)

46.
Lotya M, Hernandez Y, King PJ, Smith RJ, Nicolosi V, Karlsson LS, Blighe FM, De S, Wang Z, McGovern IT, Duesberg GS, Coleman JN. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Am Chem Soc, 131, 3611 (2009). http://dx.doi.org/10.1021/ja807449u. crossref(new window)

47.
Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM. Improved synthesis of graphene oxide. ACS Nano, 4, 4806 (2010). http://dx.doi.org/10.1021/nn1006368. crossref(new window)

48.
Kim KS, Park SJ. Influence of multi-walled carbon nanotubes on the electrochemical performance of graphene nanocomposites for supercapacitor electrodes. Electrochim Acta, 56, 1629 (2011). http://dx.doi.org/10.1016/j.electacta.2010.10.043. crossref(new window)

49.
Nakajima T, Mabuchi A, Hagiwara R. A new structure model of graphite oxide. Carbon, 26, 357 (1988). http://dx.doi. org/10.1016/0008-6223(88)90227-8. crossref(new window)

50.
Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS. Synthesis of graphenebased nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45, 1558 (2007). http://dx.doi.org/10.1016/j.carbon.2007.02.034. crossref(new window)

51.
Lomeda JR, Doyle CD, Kosynkin DV, Hwang WF, Tour JM. Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J Am Chem Soc, 130, 16201 (2008). http:// dx.doi.org/10.1021/ja806499w. crossref(new window)

52.
Tung VC, Allen MJ, Yang Y, Kaner RB. High-throughput solution processing of large-scale graphene. Nat Nanotechnol, 4, 25 (2009). http://dx.doi.org/10.1038/nnano.2008.329. crossref(new window)

53.
Ren PG, Yan DX, Ji X, Chen T, Li ZM. Temperature dependence of graphene oxide reduced by hydrazine hydrate. Nanotechnology, 22, 055705 (2011). http://dx.doi.org/10.1088/0957-4484/22/5/055705. crossref(new window)

54.
Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS. Graphenebased composite materials. Nature, 442, 282 (2006). http://dx.doi. org/10.1038/nature04969. crossref(new window)

55.
Wang G, Yang J, Park J, Gou X, Wang B, Liu H, Yao J. Facile synthesis and characterization of graphene nanosheets. J Phys Chem C, 112, 8192 (2008). http://dx.doi.org/10.1021/jp710931h. crossref(new window)

56.
Si Y, Samulski ET. Synthesis of water soluble graphene. Nano Lett, 8, 1679 (2008). http://dx.doi.org/10.1021/nl080604h. crossref(new window)

57.
Erickson K, Erni R, Lee Z, Alem N, Gannett W, Zettl A. Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv Mater, 22, 4467 (2010). http://dx.doi. org/10.1002/adma.201000732. crossref(new window)

58.
McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prud'homme RK, Aksay IA. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater, 19, 4396 (2007). http:// dx.doi.org/10.1021/cm0630800. crossref(new window)

59.
Schniepp HC, Li J-L, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud'homme RK, Car R, Saville DA, Aksay IA. Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B, 110, 8535 (2006). http://dx.doi. org/10.1021/jp060936f. crossref(new window)

60.
Kaniyoor A, Baby TT, Arockiadoss T, Rajalakshmi N, Ramaprabhu S. Wrinkled graphenes: a study on the effects of synthesis parameters on exfoliation-reduction of graphite oxide. J Phys Chem C, 115, 17660 (2011). http://dx.doi.org/10.1021/jp204039k. crossref(new window)

61.
Subrahmanyam KS, Vivekchand SRC, Govindaraj A, Rao CNR. A study of graphenes prepared by different methods: characterization, properties and solubilization. J Mater Chem, 18, 1517 (2008). http://dx.doi.org/10.1039/B716536F. crossref(new window)

62.
Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A. Graphene: the new two-dimensional nanomaterial. Angew Chem Int Ed, 48, 7752 (2009). http://dx.doi.org/10.1002/anie.200901678. crossref(new window)

63.
Morales GM, Schifani P, Ellis G, Ballesteros C, Martínez G, Barbero C, Salavagione HJ. High-quality few layer graphene produced by electrochemical intercalation and microwave-assisted expansion of graphite. Carbon, 49, 2809 (2011). http://dx.doi. org/10.1016/j.carbon.2011.03.008. crossref(new window)

64.
Andersson OE, Prasad BLV, Sato H, Enoki T, Hishiyama Y, Kaburagi Y, Yoshikawa M, Bandow S. Structure and electronic properties of graphite nanoparticles. Phys Rev B, 58, 16387 (1998). http://dx.doi.org/10.1103/PhysRevB.58.16387. crossref(new window)

65.
Prasad BLV, Sato H, Enoki T, Hishiyama Y, Kaburagi Y, Rao AM, Eklund PC, Oshida K, Endo M. Heat-treatment effect on the nanosized graphite $\pi$-electron system during diamond to graphite conversion. Phys Rev B, 62, 11209 (2000). http://dx.doi.org/10.1103/PhysRevB.62.11209. crossref(new window)

66.
Subrahmanyam KS, Panchakarla LS, Govindaraj A, Rao CNR. Simple method of preparing graphene flakes by an arc-discharge method. J Phys Chem C, 113, 4257 (2009). http://dx.doi. org/10.1021/jp900791y. crossref(new window)

67.
Rao CNR, Subrahmanyam KS, Matte HSSR, Abdulhakeem B, Govindaraj A, Barun D, Prashant K, Anupama G, Dattatray JL. A study of the synthetic methods and properties of graphenes. Sci Technol Adv Mater, 11, 054502 (2010). http://dx.doi.org/10.1088/1468-6996/11/5/054502. crossref(new window)

68.
Seshadri R, Govindaraj A, Aiyer HN, Sen R, Subbanna GN, Raju AR, Rao CNR. Investigations of carbon nanotubes. Curr Sci, 66, 839 (1994).

69.
Zhang RQ, Sarkar AD. Theoretical studies on formation, property, tuning and adsorption of graphene segments. In: Mikhailov S, ed. Physics and Applications of Graphene--Theory, InTech Openbook, Chapter 1 (2011).

70.
Lin CS, Zhang RQ, Lee ST, Elstner M, Frauenheim T, Wan LJ. Simulation of water cluster assembly on a graphite surface. J Phys Chem B, 109, 14183 (2005). http://dx.doi.org/10.1021/jp050459l. crossref(new window)

71.
Kim BJ, Lee YS, Park SJ. Novel porous carbons synthesized from polymeric precursors for hydrogen storage. Int J Hydrogen Energy, 33, 2254 (2008). http://dx.doi.org/10.1016/j.ijhydene.2008.02.019. crossref(new window)

72.
Yoo HM, Lee SY, Kim BJ, Park SJ. Influence of phosphoric acid treatment on hydrogen adsorption behaviors of activated carbons. Carbon Lett, 12, 112 (2011). http://dx.doi.org/10.5714/CL.2011.12.2.112. crossref(new window)

73.
Saha D, Deng S. Hydrogen adsorption on Pd- and Ru-doped C60 fullerene at an ambient temperature. Langmuir, 27, 6780 (2011). http://dx.doi.org/10.1021/la200091s. crossref(new window)

74.
Chen J, Wu F. Review of hydrogen storage in inorganic fullerene- like nanotubes. Appl Phys A, 78, 989 (2004). http://dx.doi. org/10.1007/s00339-003-2419-7. crossref(new window)

75.
Lee SY, Park SJ. Effect of temperature on activated carbon nanotubes for hydrogen storage behaviors. Int J Hydrogen Energy, 35, 6757 (2010). http://dx.doi.org/10.1016/j.ijhydene.2010.03.114. crossref(new window)

76.
Park SJ, Lee SY. Hydrogen storage behaviors of platinum-supported multi-walled carbon nanotubes. Int J Hydrogen Energy, 35, 13048 (2010). http://dx.doi.org/10.1016/j.ijhydene.2010.04.083. crossref(new window)

77.
Lee SY, Park SJ. Influence of $CO_{2}$ activation on hydrogen storage behaviors of platinum-loaded activated carbon nanotubes. J Solid State Chem, 183, 2951 (2010). http://dx.doi.org/10.1016/j.jssc.2010.08.035. crossref(new window)

78.
Lee SY, Park SJ. Effect of chemical treatments on hydrogen storage behaviors of multi-walled carbon nanotubes. Mater Chem Phys, 124, 1011 (2010). http://dx.doi.org/10.1016/j.matchemphys.2010.08.022. crossref(new window)

79.
Jung MJ, Im JS, Jeong E, Jin H, Lee YS. Hydrogen adsorption of pan-based porous carbon nanofibers using MgO as the substrate. Carbon Lett, 10, 217 (2009). crossref(new window)

80.
Sharon M, Sharon M, Kalita G, Mukherjee B. Hydrogen storage by carbon fibers synthesized by pyrolysis of cotton fibers. Carbon Lett, 12, 39 (2011). crossref(new window)

81.
Im JS, Kwon O, Kim YH, Park SJ, Lee YS. The effect of embedded vanadium catalyst on activated electrospun CFs for hydrogen storage. Microporous Mesoporous Mater, 115, 514 (2008). http:// dx.doi.org/10.1016/j.micromeso.2008.02.027. crossref(new window)

82.
Lee SY, Park SJ. Preparation and characterization of ordered porous carbons for increasing hydrogen storage behaviors. J Solid State Chem, 184, 2655 (2011). http://dx.doi.org/10.1016/j.jssc.2011.07.034. crossref(new window)

83.
Jiang J, Gao Q, Zheng Z, Xia K, Hu J. Enhanced room temperature hydrogen storage capacity of hollow nitrogen-containing carbon spheres. Int J Hydrogen Energy, 35, 210 (2010). http://dx.doi.org/10.1016/j.ijhydene.2009.10.042. crossref(new window)

84.
Lee SY, Park SJ. Effect of platinum doping of activated carbon on hydrogen storage behaviors of metal-organic frameworks-5. Int J Hydrogen Energy, 36, 8381 (2011). http://dx.doi.org/10.1016/j.ijhydene.2011.03.038. crossref(new window)

85.
Park SJ, Lee SY. Hydrogen storage behaviors of carbon nanotubes/ metal-organic frameworks-5. Carbon Lett, 10, 19 (2009). crossref(new window)

86.
Tylianakis E, Psofogiannakis GM, Froudakis GE. Li-doped pillared graphene oxide: a graphene-based nanostructured material for hydrogen storage. J Phys Chem Lett, 1, 2459 (2010). http:// dx.doi.org/10.1021/jz100733z. crossref(new window)

87.
Srinivas G, Zhu Y, Piner R, Skipper N, Ellerby M, Ruoff R. Synthesis of graphene-like nanosheets and their hydrogen adsorption capacity. Carbon, 48, 630 (2010). http://dx.doi.org/10.1016/j.carbon.2009.10.003. crossref(new window)

88.
Bourlinos AB, Steriotis TA, Karakassides M, Sanakis Y, Tzitzios V, Trapalis C, Kouvelos E, Stubos A. Synthesis, characterization and gas sorption properties of a molecularly-derived graphite oxidelike foam. Carbon, 45, 852 (2007). http://dx.doi.org/10.1016/j.carbon.2006.11.008. crossref(new window)

89.
Ma LP, Wu ZS, Li J, Wu ED, Ren WC, Cheng HM. Hydrogen adsorption behavior of graphene above critical temperature. Int J Hydrogen Energy, 34, 2329 (2009). http://dx.doi.org/10.1016/j.ijhydene.2008.12.079. crossref(new window)

90.
Ghosh A, Subrahmanyam KS, Krishna KS, Datta S, Govindaraj A, Pati SK, Rao CNR. Uptake of $H_{2}$ and $CO_{2}$ by graphene. J Phys Chem C, 112, 15704 (2008). http://dx.doi.org/10.1021/jp805802w. crossref(new window)

91.
Peigney A, Laurent C, Flahaut E, Bacsa RR, Rousset A. Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon, 39, 507 (2001). http://dx.doi.org/10.1016/s0008-6223(00)00155-x. crossref(new window)

92.
Kaneko K, Ishii C, Ruike M, kuwabara H. Origin of superhigh surface area and microcrystalline graphitic structures of activated carbons. Carbon, 30, 1075 (1992). http://dx.doi.org/10.1016/0008-6223(92)90139-n. crossref(new window)

93.
Bhatia SK, Myers AL. Optimum conditions for adsorptive storage. Langmuir, 22, 1688 (2006). http://dx.doi.org/10.1021/la0523816. crossref(new window)

94.
Wang L, Lee K, Sun YY, Lucking M, Chen Z, Zhao JJ, Zhang SB. Graphene oxide as an ideal substrate for hydrogen storage. ACS Nano, 3, 2995 (2009). http://dx.doi.org/10.1021/nn900667s. crossref(new window)

95.
Kim BJ, Park SJ. Optimization of the pore structure of nickel/ graphite hybrid materials for hydrogen storage. Int J Hydrogen Energy, 36, 648 (2011). http://dx.doi.org/10.1016/j.ijhydene.2010.09.097. crossref(new window)

96.
Kubas GJ, Ryan RR, Swanson BI, Vergamini PJ, Wasserman HJ. Characterization of the first examples of isolable molecular hydrogen complexes, $ M(CO)_{3}(PR_{3})_{2}(H_{2})$ (M = molybdenum or tungsten; R = Cy or isopropyl). Evidence for a side-on bonded dihydrogen ligand. J Am Chem Soc, 106, 451 (1984). http://dx.doi.org/10.1021/ja00314a049. crossref(new window)

97.
Kubas GJ. Molecular hydrogen complexes: coordination of a .sigma. bond to transition metals. Acc Chem Res, 21, 120 (1988). http://dx.doi.org/10.1021/ar00147a005. crossref(new window)

98.
Hoang TKA, Antonelli DM. Exploiting the Kubas interaction in the design of hydrogen storage materials. Adv Mater, 21, 1787 (2009). http://dx.doi.org/10.1002/adma.200802832. crossref(new window)

99.
Singh AK, Sadrzadeh A, Yakobson BI. Metallacarboranes: toward promising hydrogen storage metal organic frameworks. J Am Chem Soc, 132, 14126 (2010). http://dx.doi.org/10.1021/ja104544s. crossref(new window)