Advanced SearchSearch Tips
Improvement in ammonia gas sensing behavior by polypyrrole/multi-walled carbon nanotubes composites
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 13, Issue 2,  2012, pp.88-93
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2012.13.2.088
 Title & Authors
Improvement in ammonia gas sensing behavior by polypyrrole/multi-walled carbon nanotubes composites
Jang, Woo-Kyung; Yun, Ju-Mi; Kim, Hyung-Il; Lee, Young-Seak;
  PDF(new window)
Polypyrrole (PPy)/multi-walled carbon nanotubes (MWCNTs) composites were prepared by in situ polymerization of pyrrole on the surface of MWCNTs templates to improve the ammonia gas sensing properties. PPy morphologies, formed on the surface of MWCNTs, were investigated by field emission scanning electron microscopy. The thermal stabilities of the PPy/MWCNTs composites were improved as the content of MWCNTs increased due to the higher thermal stability of the MWCNTs. PPy/MWCNTs composites showed synergistic effects in improving the ammonia gas sensing properties, attributed to the combination of efficient electron transfer between PPy/MWCNTs composites and ammonia gas, and the reproducible electrical resistance variation on PPy during the gas sensing process.
ammonia;polypyrrole;multi-walled carbon nanotube;composite;gas sensor;
 Cited by
A hybrid gas-sensing material based on porous carbon fibers and a TiO2 photocatalyst, Journal of Materials Science, 2013, 48, 23, 8320  crossref(new windwow)
Synergetic improvement in electromagnetic interference shielding characteristics of polyaniline-coated graphite oxide/γ-Fe2O3/BaTiO3 nanocomposites, Journal of Industrial and Engineering Chemistry, 2013, 19, 2, 493  crossref(new windwow)
Carbon Nanotube-Based Chemical Sensors, Small, 2016, 12, 16, 2118  crossref(new windwow)
One-pot synthetic method to prepare highly N-doped nanoporous carbons for CO2 adsorption, Materials Chemistry and Physics, 2014, 143, 3, 1158  crossref(new windwow)
Voltammetric Determination of Ferulic Acid Using Polypyrrole-Multiwalled Carbon Nanotubes Modified Electrode with Sample Application, Nanomaterials, 2015, 5, 4, 1704  crossref(new windwow)
Facile Synthesis and Properties of Multilayered Polyaniline/Polypyrrole/Epoxy/Polystyrene/Functionalized Carbon Nanotube Composites, Polymer-Plastics Technology and Engineering, 2014, 53, 7, 661  crossref(new windwow)
A room temperature ammonia sensor based on nanosized copper hexacyanoferrate(II), Sensors and Actuators B: Chemical, 2015, 212, 487  crossref(new windwow)
Preparation and gas-sensing properties of pitch-based carbon fiber prepared using a melt-electrospinning method, Research on Chemical Intermediates, 2014, 40, 7, 2571  crossref(new windwow)
Christie S, Scorsone E, Persaud K, Kvasnik F. Remote detection of gaseous ammonia using the near infrared transmission properties of polyaniline. Sensors Actuators B: Chem, 90, 163 (2003). http:// crossref(new window)

Bendahan M, Lauque P, Lambert-Mauriat C, Carchano H, Seguin JL. Sputtered thin films of CuBr for ammonia microsensors: morphology, composition and ageing. Sensors Actuators B: Chem, 84, 6 (2002). crossref(new window)

Wang YD, Wu XH, Su Q, Li YF, Zhou ZL. Ammonia-sensing characteristics of Pt and $SiO_{2}$ doped $SnO_{2}$ materials. Solid State Electron, 45, 347 (2001). crossref(new window)

Hayakawa I, Iwamoto Y, Kikuta K, Hirano S. Gas sensing properties of platinum dispersed-TiO2 thin film derived from precursor. Sensors Actuators B: Chem, 62, 55 (2000). http://dx.doi. org/10.1016/s0925-4005(99)00303-2. crossref(new window)

Mbarek H, Saadoun M, Bessaïs B. Screen-printed Tin-doped indium oxide (ITO) films for $NH_{3}$ gas sensing. Mater Sci Eng C, 26, 500 (2006). crossref(new window)

Wang X, Miura N, Yamazoe N. Study of $WO_{3}$-based sensing materials for $NH_{3}$ and NO detection. Sensors Actuators B: Chem, 66, 74 (2000). crossref(new window)

Patil DR, Patil LA, Patil PP. $Cr_{2}O_{3}$-activated ZnO thick film resistors for ammonia gas sensing operable at room temperature. Sensors Actuators B: Chem, 126, 368 (2007). http://dx.doi. org/10.1016/j.snb.2007.03.028. crossref(new window)

Tran TH, Kwon JH, Lee KS, Lee JW, Ju BK. pH sensor using carbon nanotubes as sensing material. First International Conference on Communications and Electronics, Hanoi, Vietnam, 490 (2006).

Lange U, Roznyatovskaya NV, Mirsky VM. Conducting polymers in chemical sensors and arrays. Anal Chim Acta, 614, 1 (2008). crossref(new window)

de Souza JEG, dos Santos FL, Barros-Neto B, dos Santos CG, de Melo CP. Polypyrrole thin films gas sensors. Synth Met, 119, 383 (2001). crossref(new window)

Ram MK, Yavuz O, Lahsangah V, Aldissi M. CO gas sensing from ultrathin nano-composite conducting polymer film. Sensors Actuators B: Chem, 106, 750 (2005). snb.2004.09.027. crossref(new window)

Albuquerque JE, Mattoso LHC, Balogh DT, Faria RM, Masters JG, MacDiarmid AG. A simple method to estimate the oxidation state of polyanilines. Synth Met, 113, 19 (2000). http://dx.doi. org/10.1016/s0379-6779(99)00299-4. crossref(new window)

Song HK, Toste B, Ahmann K, Hoffman-Kim D, Palmore GTR. Micropatterns of positive guidance cues anchored to polypyrrole doped with polyglutamic acid: a new platform for characterizing neurite extension in complex environments. Biomaterials, 27, 473 (2006). crossref(new window)

Dimitrakopoulos CD, Malenfant PRL. Organic thin film transistors for large area electronics. Adv Mater, 14, 99 (2002).<99::aidadma99>;2-9. crossref(new window)

Kraft A, Grimsdale AC, Holmes AB. Electroluminescent conjugated polymers-seeing polymers in a new light. Angew Chem Int Ed, 37, 402 (1998). 3773(19980302)37:4<402::aid-anie402>;2-9. crossref(new window)

Huynh WU, Dittmer JJ, Alivisatos AP. Hybrid nanorod-polymer solar cells. Science, 295, 2425 (2002). crossref(new window)

Sun B, Marx E, Greenham NC. Photovoltaic devices using blends of branched CdSe nanoparticles and conjugated polymers. Nano Lett, 3, 961 (2003). crossref(new window)

Argun AA, Cirpan A, Reynolds JR. The first truly all-polymer electrochromic devices. Adv Mater, 15, 1338 (2003). http://dx.doi. org/10.1002/adma.200305038. crossref(new window)

Crone B, Dodabalapur A, Lin YY, Filas RW, Bao Z, LaDuca A, Sarpeshkar R, Katz HE, Li W. Large-scale complementary integrated circuits based on organic transistors. Nature, 403, 521 (2000). crossref(new window)

Kim HK, Kim MS, Chun SY, Park YH, Jeon BS, Lee JY, Hong YK, Joo J, Kim SH. Characteristics of electrically conducting polymercoated textiles. Mol Cryst Liq Cryst, 405, 161 (2003). http://dx.doi. org/10.1080/15421400390263550. crossref(new window)

Hughes M, Shaffer MSP, Renouf AC, Singh C, Chen GZ, Fray DJ, Windle AH. Electrochemical capacitance of nanocomposite films formed by coating aligned arrays of carbon nanotubes with polypyrrole. Adv Mater, 14, 382 (2002).<382::aid-adma382>;2-y. crossref(new window)

Rahman SU, Abul-Hamayel MA, Aleem BJA. Electrochemically synthesized polypyrrole films as primer for protective coatings on carbon steel. Surf Coat Technol, 200, 2948 (2006). http://dx.doi. org/10.1016/j.surfcoat.2005.04.012. crossref(new window)

Gardner JW, Bartlett PN. Application of conducting polymer technology in microsystems. Sensors Actuators A: Physical, 51, 57 (1995). crossref(new window)

Mazzoldi A, Della Santa A, De Rossi D. Conducting polymer actuators: properties and modeling. In: Osada Y, De Rossi DE, eds. Polymer Sensors and Actuators, Springer, Berlin, Germany, 207 (2000).

Hagleitner C, Hierlemann A, Lange D, Kummer A, Kerness N, Brand O, Baltes H. Smart single-chip gas sensor microsystem. Nature, 414, 293 (2001). crossref(new window)

Arami H, Mazloumi M, Khalifehzadeh R, Emami SH, Sadrnezhaad SK. Polypyrrole/multiwall carbon nanotube nanocomposites electropolymerized on copper substrate. Mater Lett, 61, 4412 (2007). crossref(new window)

Kauffman DR, Star A. Carbon nanotube gas and vapor sensors. Angew Chem Int Ed, 47, 6550 (2008). crossref(new window)

Im JS, Kim JG, Lee YS. Fluorination effects of carbon black additives for electrical properties and EMI shielding efficiency by improved dispersion and adhesion. Carbon, 47, 2640 (2009). http:// crossref(new window)

Makeiff DA, Huber T. Microwave absorption by polyaniline- carbon nanotube composites. Synth Met, 156, 497 (2006). http:// crossref(new window)

Singh V, Mohan S, Singh G, Pandey PC, Prakash R. Synthesis and characterization of polyaniline-carboxylated PVC composites: application in development of ammonia sensor. Sensors Actuators B: Chem, 132, 99 (2008). crossref(new window)

Kodjie SL, Li L, Li B, Cai W, Li CY, Keating M. Morphology and crystallization behavior of HDPE/CNT nanocomposite. J Macromol Sci B, 45, 231 (2006). crossref(new window)

Mohammad F, Calvert P, Billingham N. Thermal stability of electrochemically prepared polythiophene and polypyrrole. Bull Mater Sci, 18, 255 (1995). crossref(new window)

Wang SG, Zhang Q, Yang DJ, Sellin PJ, Zhong GF. Multi-walled carbon nanotube-based gas sensors for $NH_{3}$ detection. Diamond Relat Mater, 13, 1327 (2004). crossref(new window)

Bhat NV, Gadre AP, Bambole VA. Structural, mechanical, and electrical properties of electropolymerized polypyrrole composite films. J Appl Polym Sci, 80, 2511 (2001). http://dx.doi. org/10.1002/app.1359. crossref(new window)

Yoon H, Chang M, Jang J. Sensing behaviors of polypyrrole nanotubes prepared in reverse microemulsions: effects of transducer size and transduction mechanism. J Phys Chem B, 110, 14074 (2006). crossref(new window)