JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Synthesis of thin-multiwalled carbon nanotubes by Fe-Mo/MgO catalyst using sol-gel method
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 13, Issue 2,  2012, pp.99-108
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2012.13.2.099
 Title & Authors
Synthesis of thin-multiwalled carbon nanotubes by Fe-Mo/MgO catalyst using sol-gel method
Dubey, Prashant; Choi, Sang-Kyu; Kim, Bawl; Lee, Cheol-Jin;
  PDF(new window)
 Abstract
The sol-gel technique has been studied to fabricate a homogeneous Fe-Mo/MgO catalyst. Ambient effects (air, Ar, and ) on thermal decomposition of the citrate precursor have been systematically investigated to fabricate an Fe-Mo/MgO catalyst. Severe agglomeration of metal catalyst was observed under thermal decomposition of citrate precursor in air atmosphere. Ar/ atmosphere effectively restricted agglomeration of bimetallic catalyst and formation of highly-dispersed Fe-Mo/MgO catalyst with high specific surface-area due to the formation of Fe-Mo nanoclusters within MgO support. High-quality thin-multiwalled carbon nanotubes (t-MWCNTs) with uniform diameters were achieved on a large scale by catalytic decomposition of methane over Fe-Mo/MgO catalyst prepared under Ar-atmosphere. The produced t-MWCNTs had outer diameters in the range of 4-8 nm (average diameter ~6.6 nm) and wall numbers in the range of 4-7 graphenes. The as-synthesized t-MWCNTs showed product yields over 450% relative to the utilized Fe-Mo/MgO catalyst, and indicated a purity of about 85%.
 Keywords
thermal decomposition;citrate precursor;nanoclusters;thin-multiwalled carbon nanotubes;
 Language
English
 Cited by
1.
The effects of catalyst pretreatment, growth atmosphere and temperature on carbon nanotube synthesis using Co–Mo/MgO catalyst, Diamond and Related Materials, 2015, 60, 81  crossref(new windwow)
2.
Microstructural study of FeMo/MgO catalysts prepared by sol–gel and co–impregnation and their relationship with the growth of carbon nanotubes, Diamond and Related Materials, 2015, 60, 35  crossref(new windwow)
3.
Hydrogen and multiwall carbon nanotubes production by catalytic decomposition of methane: Thermogravimetric analysis and scaling-up of Fe–Mo catalysts, International Journal of Hydrogen Energy, 2014, 39, 8, 3698  crossref(new windwow)
 References
1.
Jeong HD, Lee JH, Lee BG, Jeong HJ, Lee GW, Bang DS, Cho DH, Park YB, Jhee KH. Effect of few-walled carbon nanotube crystallinit on electron field emission property. Carbon Letters, 11, 207, (2011). http://dx.doi.org/CL.2011.12.4.207.

2.
Jeong HJ, Choi HK, Kim GY, Song YI, Tong Y, Lim SC, Lee YH. Fabrication of efficient field emitters with thin multiwalled carbon nanotubes using spray method. Carbon, 44, 2689 (2006). http:// dx.doi.org/10.1016/j.carbon.2006.04.009. crossref(new window)

3.
Yuan H, Shin DH, Kim B, Lee CJ. Synthesis of well-aligned thin multiwalled carbon nanotubes on the silicon substrate and their field emission properties. Carbon Letters, 12, 218 (2011). http:// dx.doi.org/CL.2011.12.4.218. crossref(new window)

4.
Jeong HJ, Kim KK, Jeong SY, Park MH, Yang CW, Lee YH. Highyield catalytic synthesis of thin multiwalled carbon nanotubes. J Phys Chem B, 108, 17695 (2004). http://dx.doi.org/10.1021/jp046152o. crossref(new window)

5.
Zhou LP, Ohta K, Kuroda K, Lei N, Matsuishi K, Gao L, Matsumoto T, Nakamura J. Catalytic functions of Mo/Ni/MgO in the synthesis of thin carbon nanotubes. J Phys Chem B, 109, 4439 (2005). http://dx.doi.org/10.1021/jp045284e. crossref(new window)

6.
Qi H, Qian C, Liu J. Synthesis of high-purity few-walled carbon nanotubes from ethanol/methanol mixture. Chem Mater, 18, 5691 (2006). http://dx.doi.org/10.1021/cm061528r. crossref(new window)

7.
Flahaut E, Peigney A, Laurent C, Rousset A. Synthesis of singlewalled carbon nanotube-Co-MgO composite powders and extraction of the nanotubes. J Mater Chem, 10, 249 (2000). http://dx.doi. org/10.1039/A908593I. crossref(new window)

8.
Li Y, Liu J, Wang Y, Wang ZL. Preparation of monodispersed Fe− Mo nanoparticles as the catalyst for CVD synthesis of carbon nanotubes. Chem Mater, 13, 1008 (2001). http://dx.doi.org/10.1021/cm000787s. crossref(new window)

9.
Jodin L, Dupuis AC, Rouviere E, Reiss P. Influence of the catalyst type on the growth of carbon nanotubes via methane chemical vapor deposition. J Phys Chem B, 110, 7328 (2006). http://dx.doi. org/10.1021/jp056793z. crossref(new window)

10.
Deshpande K, Mukasyan A, Varma A. Direct synthesis of iron oxide nanopowders by the combustion approach: reaction mechanism and properties. Chem Mater, 16, 4896 (2004). http://dx.doi. org/10.1021/cm040061m. crossref(new window)

11.
Coquay P, De Grave E, Peigney A, Vandenberghe RE, Laurent C. Carbon nanotubes by a CVD method. Part I: synthesis and characterization of the (Mg, Fe)O catalysts. J Phys Chem B, 106, 13186 (2002). http://dx.doi.org/10.1021/jp026631s. crossref(new window)

12.
Coquay P, Peigney A, De Grave E, Vandenberghe RE, Laurent C. Carbon nanotubes by a CVD method. Part II: formation of nanotubes from (Mg, Fe)O catalysts. J Phys Chem B, 106, 13199 (2002). http://dx.doi.org/10.1021/jp026632k. crossref(new window)

13.
Flahaut E, Peigney A, Bacsa WS, Bacsa RR, Laurent C. CCVD synthesis of carbon nanotubes from (Mg,Co,Mo)O catalysts: influence of the proportions of cobalt and molybdenum. J Mater Chem, 14, 646 (2004). http://dx.doi.org/10.1039/B312367G. crossref(new window)

14.
Alvarez WE, Kitiyanan B, Borgna A, Resasco DE. Synergism of Co and Mo in the catalytic production of single-wall carbon nanotubes by decomposition of CO. Carbon, 39, 547 (2001). http:// dx.doi.org/10.1016/s0008-6223(00)00173-1. crossref(new window)

15.
Ning Y, Zhang X, Wang Y, Sun Y, Shen L, Yang X, Van Tendeloo G. Bulk production of multi-wall carbon nanotube bundles on sol-gel prepared catalyst. Chem Phys Lett, 366, 555 (2002). http:// dx.doi.org/10.1016/s0009-2614(02)01647-0. crossref(new window)

16.
Shajahan M, Mo YH, Fazle Kibria AKM, Kim MJ, Nahm KS. High growth of SWNTs and MWNTs from $C_{2}H_{2}$ decomposition over Co-Mo/MgO catalysts. Carbon, 42, 2245 (2004). http:// dx.doi.org/10.1016/j.carbon.2004.04.038. crossref(new window)

17.
Perez-Mendoza M, Valles C, Maser WK, Martinez MT, Benito AM. Influence of molybdenum on the chemical vapour deposition production of carbon nanotubes. Nanotechnology, 16, S224 (2005). http://dx.doi.org/10.1088/0957-4484/16/5/016. crossref(new window)

18.
Ward DA, Ko EI. Preparing catalytic materials by the sol-gel method. Ind Eng Chem Res, 34, 421 (1995). http://dx.doi.org/10.1021/ie00041a001. crossref(new window)

19.
Dubey P, Choi SK, Choi JH, Shin DH, Lee CJ. High-quality thinmultiwalled carbon nanotubes synthesized by Fe-Mo/MgO catalyst based on a solgel technique: synthesis, characterization, and field emission. J Nanosci Nanotechnol, 10, 3998 (2010). http:// dx.doi.org/10.1166/jnn.2010.1984 crossref(new window)

20.
Zhou ZH, Deng YF, Cao ZX, Zhang RH, Chow YL. Dimeric dioxomolybdenum(VI) and oxomolybdenum(V) complexes with citrate at very low pH and neutral conditions. Inorg Chem, 44, 6912 (2005). http://dx.doi.org/10.1021/ic048330y. crossref(new window)

21.
Wang JA, Novaro O, Bokhimi X, Lopez T, Gomez R, Navarrete J, Llanos ME, Lopez-Salinas E. Structural defects and acidic and basic sites in sol−gel MgO. J Phys Chem B, 101, 7448 (1997). http:// dx.doi.org/10.1021/jp970233l. crossref(new window)

22.
Hu YH, Ruckenstein E. Binary MgO-based solid solution catalysts for methane conversion to syngas. Catal Rev, 44, 423 (2002). http://dx.doi.org/10.1081/cr-120005742. crossref(new window)

23.
Li Y, Zhang X, Tao X, Xu J, Chen F, Huang W, Liu F. Growth mechanism of multi-walled carbon nanotubes with or without bundles by catalytic deposition of methane on Mo/MgO. Chem Phys Lett, 386, 105 (2004). http://dx.doi.org/10.1016/j.cplett.2003.12.128. crossref(new window)

24.
Wang HM, Wang XH, Zhang MH, Du XY, Li W, Tao KY. Synthesis of bulk and supported molybdenum carbide by a single-step thermal carburization method. Chem Mater, 19, 1801 (2007). http://dx.doi.org/10.1021/cm0615471. crossref(new window)

25.
Hua Z, Bu W, Lian Y, Chen H, Li L, Zhang L, Li C, Shi J. Postgrafting preparation of large-pore mesoporous materials with localized high content titanium doping. J Mater Chem, 15, 661 (2005). http://dx.doi.org/10.1039/B413478H. crossref(new window)

26.
Ma W, Kugler EL, Wright J, Dadyburjor DB. Mo−Fe catalysts supported on activated carbon for synthesis of liquid fuels by the Fischer−Tropsch process: effect of Mo addition on reducibility, activity, and hydrocarbon selectivity. Energy Fuels, 20, 2299 (2006). http://dx.doi.org/10.1021/ef0602372. crossref(new window)

27.
Hu M, Murakami Y, Ogura M, Maruyama S, Okubo T. Morphology and chemical state of Co-Mo catalysts for growth of single-walled carbon nanotubes vertically aligned on quartz substrates. J Catal, 225, 230 (2004). http://dx.doi.org/10.1016/j.jcat.2004.04.013. crossref(new window)

28.
Herrera JE, Balzano L, Borgna A, Alvarez WE, Resasco DE. Relationship between the structure/composition of Co-Mo catalysts and their ability to produce single-walled carbon nanotubes by CO disproportionation. J Catal, 204, 129 (2001). http://dx.doi. org/10.1006/jcat.2001.3383. crossref(new window)

29.
Quincy RB, Houalla M, Proctor A, Hercules DM. Distribution of molybdenum oxidation states in reduced molybdenum/titania catalysts: correlation with benzene hydrogenation activity. J Phys Chem, 94, 1520 (1990). http://dx.doi.org/10.1021/j100367a058. crossref(new window)

30.
Katrib A, Leflaive P, Hilaire L, Maire G. Molybdenum based catalysts. I. $MoO_{2}$ as the active species in the reforming of hydrocarbons. Catal Lett, 38, 95 (1996). http://dx.doi.org/10.1007/bf00806906. crossref(new window)

31.
Solymosi F, Cserenyi J, Szoke A, Bansagi T, Oszko A. Aromatization of methane over supported and unsupported Mo-based catalysts. J Catal, 165, 150 (1997). http://dx.doi.org/10.1006/jcat.1997.1478. crossref(new window)

32.
Muller A, Sarkar S, Shah SQN, Bogge H, Schmidtmann M, Sarkar S, Kogerler P, Hauptfleisch B, Trautwein AX, Schunemann V. Archimedean synthesis and magic numbers: "sizing" giant molybdenum- oxide-based molecular spheres of the Keplerate type. Angew Chem Int Ed, 38, 3238 (1999). http://dx.doi.org/10.1002/(sici)1521-3773(19991102)38:21<3238::aid-anie3238>3.0.co;2-6. crossref(new window)

33.
Muller A, Krickemeyer E, Das SK, Kogerler P, Sarkar S, Bogge H, Schmidtmann M, Sarkar S. Linking icosahedral, strong molecular magnets {Mo} to layers—a solid-state reaction at room temperature. Angew Chem Int Ed, 39, 1612 (2000). http:// dx.doi.org/10.1002/(sici)1521-3773(20000502)39:9<1612::aidanie1612>3.0.co;2-l. crossref(new window)

34.
Herrera JE, Resasco DE. Loss of single-walled carbon nanotubes selectivity by disruption of the Co-Mo interaction in the catalyst. J Catal, 221, 354 (2004). http://dx.doi.org/10.1016/j.jcat.2003.08.005. crossref(new window)

35.
Auvray N, Braunstein P, Mathur S, Veith M, Shen H, Hufner S. Thin films by metal organic deposition of Fe-Mo-S molecular clusters: synthesis and crystal structure of [$Cp_{2}MoFe_{2}({\mu}_{3}-S)_{2}(CO)_{6}$]. New J Chem, 27, 155 (2003). http://dx.doi.org/10.1039/B206923G. crossref(new window)

36.
Hoor FS, Tharamani CN, Ahmed MF, Mayanna SM. Electrochemical synthesis of Fe-Mo and Fe-Mo-Pt alloys and their electrocatalytic activity for methanol oxidation. J Power Sources, 167, 18 (2007). http://dx.doi.org/10.1016/j.jpowsour.2007.01.089. crossref(new window)

37.
Wang L, Tao L, Xie M, Xu G, Huang J, Xu Y. Dehydrogenation and aromatization of methane under non-oxidizing conditions. Catal Lett, 21, 35 (1993). http://dx.doi.org/10.1007/bf00767368. crossref(new window)

38.
Solymosi F, Nemeth R, Ovari L, Egri L. Reactions of propane on supported Mo2C catalysts. J Catal, 195, 316 (2000). http://dx.doi. org/10.1006/jcat.2000.3000. crossref(new window)

39.
Shu Y, Ichikawa M. Catalytic dehydrocondensation of methane towards benzene and naphthalene on transition metal supported zeolite catalysts: templating role of zeolite micropores and characterization of active metallic sites. Catal Today, 71, 55 (2001). http:// dx.doi.org/10.1016/s0920-5861(01)00440-0. crossref(new window)

40.
Cassell AM, Raymakers JA, Kong J, Dai H. Large scale CVD synthesis of single-walled carbon nanotubes. J Phys Chem B, 103, 6484 (1999). http://dx.doi.org/10.1021/jp990957s. crossref(new window)

41.
Chiang IW, Brinson BE, Huang AY, Willis PA, Bronikowski MJ, Margrave JL, Smalley RE, Hauge RH. Purification and characterization of single-wall carbon nanotubes (SWNTs) obtained from the gas-phase decomposition of CO (HiPco process). J Phys Chem B, 105, 8297 (2001). http://dx.doi.org/10.1021/jp0114891. crossref(new window)

42.
Bacsa WS, Ugarte D, Chatelain A, de Heer WA. High-resolution electron microscopy and inelastic light scattering of purified multishelled carbon nanotubes. Phys Rev B, 50, 15473 (1994). http:// dx.doi.org/10.1103/PhysRevB.50.15473. crossref(new window)

43.
Tohji K, Goto T, Takahashi H, Shinoda Y, Shimizu N, Jeyadevan B, Matsuoka I, Saito Y, Kasuya A, Ohsuna T, Hiraga K, Nishina Y. Purifying single-walled nanotubes. Nature, 383, 679 (1996). http:// dx.doi.org/10.1038/383679a0. crossref(new window)