Advanced SearchSearch Tips
Fabrication and Cell Culturing on Carbon Nanofibers/Nanoparticles Reinforced Membranes for Bone-Tissue Regeneration
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 13, Issue 3,  2012, pp.139-150
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2012.13.3.139
 Title & Authors
Fabrication and Cell Culturing on Carbon Nanofibers/Nanoparticles Reinforced Membranes for Bone-Tissue Regeneration
Deng, Xu Liang; Yang, Xiao Ping;
  PDF(new window)
Poly-L-lactic acid (PLLA), PLLA/hydroxyapatite (HA), PLLA/multiwalled carbon nanotubes (MWNTs)/HA, PLLA/trifluoroethanol (TFE), PLLA/gelatin, and carbon nanofibers (CNFs)/-tricalcium phosphate (-TCP) composite membranes (scaffolds) were fabricated by electrospinning and their morphologies, and mechanical properties were characterized for use in bone tissue regeneration/guided tissue regeneration. MWNTs and HA nanoparticles were well distributed in the membranes and the degradation characteristics were improved. PLLA/MWNTs/HA membranes enhanced the adhesion and proliferation of periodontal ligament cells (PDLCs) by 30% and inhibited the adhesion of gingival epithelial cells by 30%. Osteoblast-like MG-63 cells on the randomly fiber oriented PLLA/TEF membrane showed irregular forms, while the cells exhibited shuttle-like shapes on the parallel fiber oriented membrane. Classical supersaturated simulated body fluids were modified by bubbling and applied to promote the biomineralization of the PLLA/gelatin membrane; this resulted in predictions of bone bonding bioactivity of the substrates. The -TCP membranes exhibit good biocompatibility, have an effect on PDLC growth comparable to that of pure CNF membrane, and can be applied as scaffolds for bone tissue regeneration.
composite membrane;scaffold;periodontal ligament cell;bone tissue regeneration;simulated body fluid;biocompatibility;
 Cited by
알루미나 나노섬유와 분말이 첨가된 에폭시 복합재료의 열전도도 특성 및 파괴인성에 대한 연구,최정란;박수진;

폴리머, 2013. vol.37. 1, pp.47-51 crossref(new window)
Effects of pore structures on electrochemical behaviors of polyacrylonitrile (PAN)-based activated carbon nanofibers, Journal of Industrial and Engineering Chemistry, 2015, 21, 736  crossref(new windwow)
A Study on Thermal Conductivity and Fracture Toughness of Alumina Nanofibers and Powders-filled Epoxy Matrix Composites, Polymer Korea, 2013, 37, 1, 47  crossref(new windwow)
Combined effect of corona discharge and enzymatic treatment on the mechanical and surface properties of wool, Journal of Industrial and Engineering Chemistry, 2014, 20, 1, 179  crossref(new windwow)
Sequeira SJ, Soscia David A, Oztan B, Mosier Aaron P, Jean-Gilles R, Gadre A, Cady Nathaniel C, Yener B, Castracane J, Larsen M. The regulation of focal adhesion complex formation and salivary gland epithelial cell organization by nanofibrous PLGA scaffolds. Biomaterials, 33, 3175 (2012). 2012.01.010. crossref(new window)

Jang JH, Castano O, Kim HW. Electrospun materials as potential platforms for bone tissue engineering. Adv Drug Del Rev, 61, 1065 (2009). crossref(new window)

Beachley V, Wen X. Polymer nanofibrous structures: fabrication, biofunctionalization, and cell interactions. Prog Polym Sci, 35, 868 (2010). crossref(new window)

Kim HW, Song JH, Kim HE. Nanofiber generation of gelatin-hydroxyapatite biomimetics for guided tissue regeneration. Adv Funct Mater, 15, 1988 (2005). crossref(new window)

Hillmann G, Steinkamp-Zucht A, Geurtsen W, Gross G, Hoffmann A. Culture of primary human gingival fibroblasts on biodegradable membranes. Biomaterials, 23, 1461 (2002). http://dx.doi. org/10.1016/s0142-9612(01)00270-8. crossref(new window)

Owen GR, Jackson J, Chehroudi B, Burt H, Brunette DM. A PLGA membrane controlling cell behaviour for promoting tissue regeneration. Biomaterials, 26, 7447 (2005). biomaterials.2005.05.055. crossref(new window)

Liao S, Wang W, Uo M, Ohkawa S, Akasaka T, Tamura K, Cui F, Watari F. A three-layered nano-carbonated hydroxyapatite/collagen/ PLGA composite membrane for guided tissue regeneration. Biomaterials, 26, 7564 (2005). 2005.05.050. crossref(new window)

Song JH, Kim HE, Kim HW. Electrospun fibrous web of collagen- apatite precipitated nanocomposite for bone regeneration. J Mater Sci Mater Med, 19, 2925 (2008). s10856-008-3420-7. crossref(new window)

Kim HW, Yu HS, Lee HH. Nanofibrous matrices of poly(lactic acid) and gelatin polymeric blends for the improvement of cellular responses. J Biomed Mater Res A, 87, 25 (2008). http://dx.doi. org/10.1002/jbm.a.31677. crossref(new window)

An K, Liu H, Guo S, Kumar DNT, Wang Q. Preparation of fish gelatin and fish gelatin/poly(l-lactide) nanofibers by electrospinning. Int J Biol Macromol, 47, 380 (2010). ijbiomac.2010.06.002. crossref(new window)

Chong EJ, Phan TT, Lim IJ, Zhang YZ, Bay BH, Ramakrishna S, Lim CT. Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomater, 3, 321 (2007). 2007.01.002. crossref(new window)

Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani M-H, Ramakrishna S. Electrospun poly($\varepsilon$-caprolactone)/ gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials, 29, 4532 (2008). 2008.08.007. crossref(new window)

Meng ZX, Wang YS, Ma C, Zheng W, Li L, Zheng YF. Electrospinning of PLGA/gelatin randomly-oriented and aligned nanofibers as potential scaffold in tissue engineering. Mater Sci Eng C, 30, 1204 (2010). crossref(new window)

Jose MV, Thomas V, Dean DR, Nyairo E. Fabrication and characterization of aligned nanofibrous PLGA/Collagen blends as bone tissue scaffolds. Polymer, 50, 3778 (2009). http://dx.doi. org/10.1016/j.polymer.2009.05.035. crossref(new window)

Lee TM, Yang CY, Chang E, Tsai RS. Comparison of plasmasprayed hydroxyapatite coatings and zirconia-reinforced hydroxyapatite composite coatings: in vivo study. J Biomed Mater Res A, 71, 652 (2004). crossref(new window)

Auclair-Daigle C, Bureau MN, Legoux JG, Yahia LH. Bioactive hydroxyapatite coatings on polymer composites for orthopedic implants. J Biomed Mater Res A, 73, 398 (2005). http://dx.doi. org/10.1002/jbm.a.30284. crossref(new window)

Gomez-Vega JM, Saiz E, Tomsia AP, Marshall GW, Marshall SJ. Bioactive glass coatings with hydroxyapatite and $Bioglass^{(R)}$ particles on Ti-based implants. 1. Processing. Biomaterials, 21, 105 (2000). crossref(new window)

LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res, 81 (2002).

Liu Q, Wijn JR, Bakker D, Blitterswijk CA. Surface modification of hydroxyapatite to introduce interfacial bonding with polyactiveTM 70/30 in a biodegradable composite. J Mater Sci Mater Med, 7, 551 (1996). crossref(new window)

Kikuchi M, Suetsugu Y, Tanaka J, Akao M. Preparation and mechanical properties of calcium phosphate/copoly-L-lactide composites. J Mater Sci Mater Med, 8, 361 (1997). http://dx.doi. org/10.1023/a:1018580816388. crossref(new window)

Rho JY, Kuhn-Spearing L, Zioupos P. Mechanical properties and the hierarchical structure of bone. Med Eng Phys, 20, 92 (1998). crossref(new window)

Du C, Cui FZ, Zhu XD, de Groot K. Three-dimensional nano-HAp/ collagen matrix loading with osteogenic cells in organ culture. J Biomed Mater Res, 44, 407 (1999). (sici)1097-4636(19990315)44:4<407::aid-jbm6>;2-t. crossref(new window)

Du C, Cui FZ, Feng QL, Zhu XD, de Groot K. Tissue response to nano-hydroxyapatite/collagen composite implants in marrow cavity. J Biomed Mater Res, 42, 540 (1998). (sici)1097-4636(19981215)42:4<540::aid-jbm9>;2-2. crossref(new window)

Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res, 51, 475 (2000). http://<475::aidjbm23>;2-9. crossref(new window)

Ueyama Y, Ishikawa K, Mano T, Koyama T, Nagatsuka H, Suzuki K, Ryoke K. Usefulness as guided bone regeneration membrane of the alginate membrane. Biomaterials, 23, 2027 (2002). http:// crossref(new window)

Kikuchi M, Koyama Y, Takakuda K, Miyairi H, Shirahama N, Tanaka J. In vitro change in mechanical strength of $\beta$-tricalcium phosphate/copolymerized poly-L-lactide composites and their application for guided bone regeneration. J Biomed Mater Res, 62, 265 (2002). crossref(new window)

Chen F, Wang ZC, Lin CJ. Preparation and characterization of nano-sized hydroxyapatite particles and hydroxyapatite/chitosan nano-composite for use in biomedical materials. Mater Lett, 57, 858 (2002). crossref(new window)

Kasuga T, Maeda H, Kato K, Nogami M, Hata K, Ueda M. Preparation of poly(lactic acid) composites containing calcium carbonate (vaterite). Biomaterials, 24, 3247 (2003). http://dx.doi. org/10.1016/s0142-9612(03)00190-x. crossref(new window)

Deng X, Hao J, Wang C. Preparation and mechanical properties of nanocomposites of poly(d,l-lactide) with Ca-deficient hydroxyapatite nanocrystals. Biomaterials, 22, 2867 (2001). http://dx.doi. org/10.1016/s0142-9612(01)00031-x. crossref(new window)

Kim HW, Kim HE, Salih V. Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds. Biomaterials, 26, 5221 (2005). http://dx.doi. org/10.1016/j.biomaterials.2005.01.047. crossref(new window)

Yamauchi K, Goda T, Takeuchi N, Einaga H, Tanabe T. Preparation of collagen/calcium phosphate multilayer sheet using enzymatic mineralization. Biomaterials, 25, 5481 (2004). http://dx.doi. org/10.1016/j.biomaterials.2003.12.057. crossref(new window)

Formhals A. US Patent No. 1 975 504 (1934).

Matthews JA, Wnek GE, Simpson DG, Bowlin GL. Electrospinning of collagen nanofibers. Biomacromolecules, 3, 232 (2002). crossref(new window)

Xu CY, Inai R, Kotaki M, Ramakrishna S. Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials, 25, 877 (2004). s0142-9612(03)00593-3. crossref(new window)

Mei F, Zhong J, Yang X, Ouyang X, Zhang S, Hu X, Ma Q, Lu J, Ryu S, Deng X. Improved biological characteristics of poly(Llactic acid) electrospun membrane by incorporation of multiwalled carbon nanotubes/hydroxyapatite nanoparticles. Biomacromolecules, 8, 3729 (2007). crossref(new window)

Cai Q, Xu Q, Feng Q, Cao X, Yang X, Deng X. Biomineralization of electrospun poly(L-lactic acid)/gelatin composite fibrous scaffold by using a supersaturated simulated body fluid with continuous $CO_{2}$ bubbling. Appl Surf Sci, 257, 10109 (2011). http://dx.doi. org/10.1016/j.apsusc.2011.06.157. crossref(new window)

Shi X, Hudson JL, Spicer PP, Tour JM, Krishnamoorti R, Mikos AG. Injectable nanocomposites of single-walled carbon nanotubes and biodegradable polymers for bone tissue engineering. Biomacromolecules, 7, 2237 (2006). bm060391v. crossref(new window)

Bhattacharyya S, Guillot S, Dabboue H, Tranchant JF, Salvetat JP. Carbon nanotubes as structural nanofibers for hyaluronic acid hydrogel scaffolds. Biomacromolecules, 9, 505 (2008). http://dx.doi. org/10.1021/bm7009976. crossref(new window)

Ogose A, Hotta T, Kawashima H, Kondo N, Gu W, Kamura T, Endo N. Comparison of hydroxyapatite and beta tricalcium phosphate as bone substitutes after excision of bone tumors. J Biomed Mater Res B, 72, 94 (2005). crossref(new window)

Liu H, Cai Q, Lian P, Fang Z, Duan S, Ryu S, Yang X, Deng X. The biological properties of carbon nanofibers decorated with $\beta$-tricalcium phosphate nanoparticles. Carbon, 48, 2266 (2010). crossref(new window)

Kim H-W, Yu H-S, Lee H-H. Nanofibrous matrices of poly(lactic acid) and gelatin polymeric blends for the improvement of cellular responses. J J Biomed Mater Res A, 87, 25 (2008). crossref(new window)

Murphy WL, Kohn DH, Mooney DJ. Growth of continuous bonelike mineral within porous poly(lactide-co-glycolide) scaffolds in vitro. J Biomed Mater Res, 50, 50 (2000).<50::aid-jbm8>;2-f. crossref(new window)

Madurantakam PA, Rodriguez IA, Cost CP, Viswanathan R, Simpson DG, Beckman MJ, Moon PC, Bowlin GL. Multiple factor interactions in biomimetic mineralization of electrospun scaffolds. Biomaterials, 30, 5456 (2009). 2009.06.043. crossref(new window)

Wang B, Cai Q, Zhang S, Yang X, Deng X. The effect of poly (L-lactic acid) nanofiber orientation on osteogenic responses of human osteoblast-like MG63 cells. J Mech Behav Biomed Mater, 4, 600 (2011). crossref(new window)

Sui G, Yang X, Mei F, Hu X, Chen G, Deng X, Ryu S. Poly-Llactic acid/hydroxyapatite hybrid membrane for bone tissue regeneration. J Biomed Mater Res A, 82, 445 (2007). crossref(new window)

Wataha JC, Craig RG, Hanks CT. Precision of and new methods for testing in vitro alloy cytotoxicity. Dent Mater, 8, 65 (1992). http:// crossref(new window)

Zhang R, Ma PX. Poly($\alpha$-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. J Biomed Mater Res, 44, 446 (1999). http://<446::aidjbm11>;2-f. crossref(new window)

Wutticharoenmongkol P, Pavasant P, Supaphol P. Osteoblastic phenotype expression of MC3T3-E1 cultured on electrospun polycaprolactone fiber mats filled with hydroxyapatite nanoparticles. Biomacromolecules, 8, 2602 (2007). bm700451p. crossref(new window)

Chen M, Patra PK, Warner SB, Bhowmick S. Role of fiber diameter in adhesion and proliferation of NIH 3T3 fibroblast on electrospun polycaprolactone scaffolds. Tissue Eng, 13, 579 (2007). crossref(new window)

Wang HL, Miyauchi M, Takata T. Initial attachment of osteoblasts to various guided bone regeneration membranes: an in vitro study. J Periodont Res, 37, 340 (2002). 0765.2002.01625.x. crossref(new window)

Isikli C, Hasirci V, Hasirci N. Development of porous chitosan- gelatin/hydroxyapatite composite scaffolds for hard tissue-engineering applications. J Tissue Eng Regener Med, 6, 135 (2012). crossref(new window)

Ko YH, Seo DS, Lee JK. Biological behavior of MG63 cells on the hydroxyapatite surface. Bioceram Develop Appl, 1, D101126 (2011). crossref(new window)