JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Synthesis and Electrochemical Performance of Polypyrrole-Coated Iron Oxide/Carbon Nanotube Composites
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 13, Issue 3,  2012, pp.157-160
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2012.13.3.157
 Title & Authors
Synthesis and Electrochemical Performance of Polypyrrole-Coated Iron Oxide/Carbon Nanotube Composites
Kim, Dae-Won; Kim, Ki-Seok; Park, Soo-Jin;
  PDF(new window)
 Abstract
In this work, iron oxide () nanoparticles were deposited on multi-walled carbon nanotubes (MWNTs) by a simple chemical coprecipitation method and -decorated MWNTs (Fe-MWNTs)/polypyrrole (PPy) nanocomposites (Fe-MWNTs/PPy) were prepared by oxidation polymerization. The effect of the PPy on the electrochemical properties of the Fe-MWNTs was investigated. The structures characteristics and surface properties of MWNTs, Fe-MWNTs, and Fe-MWNTs/PPy were characterized by X-ray diffraction and X-ray photoelectron spectroscopy, respectively. The electrochemical performances of MWNTs, Fe-MWNTs, and Fe-MWNTs/PPy were determined by cyclic voltammetry and galvanostatic charge/discharge characteristics in a 1.0 M sodium sulfite electrolyte. The results showed that the Fe-MWNTs/PPy electrode had typical pseudo-capacitive behavior and a specific capacitance significantly greater than that of the Fe-MWNT electrode, indicating an enhanced electrochemical performance of the Fe-MWNTs/PPy due to their high electrical properties.
 Keywords
multi-walled carbon nanotube;iron oxide;polypyrrole;supercapacitor;
 Language
English
 Cited by
1.
Influence of carbon nanofibers on electrochemical properties of carbon nanofibers/glass fibers composites,;;

Current Applied Physics, 2013. vol.13. 4, pp.640-644 crossref(new window)
1.
Polypyrrole/iron oxide/reduced graphene oxide ternary composite as a binderless electrode material with high cyclic stability for supercapacitors, Composites Part B: Engineering, 2017, 109, 23  crossref(new windwow)
2.
Preparation, physicochemical, and electrochemical properties of magnetite electrodes for methanol electrocatalytic oxidation in an alkaline medium, Desalination and Water Treatment, 2016, 1  crossref(new windwow)
3.
High electrochemical performance of carbon black-bonded carbon nanotubes for electrode materials, Materials Research Bulletin, 2012, 47, 12, 4146  crossref(new windwow)
4.
Morphology control and high electrochemical performance of flower-like N-enriched porous carbons for supercapacitor, Journal of Electroanalytical Chemistry, 2012, 687, 18  crossref(new windwow)
5.
Preferential magnetic targeting of carbon nanotubes to cancer sites: noninvasive tracking using MRI in a murine breast cancer model, Nanomedicine, 2015, 10, 6, 931  crossref(new windwow)
6.
Can Faradaic Processes in Residual Iron Catalyst Help Overcome Intrinsic EDLC Limits of Carbon Nanotubes?, The Journal of Physical Chemistry C, 2014, 118, 46, 26498  crossref(new windwow)
7.
Influence of carbon nanofibers on electrochemical properties of carbon nanofibers/glass fibers composites, Current Applied Physics, 2013, 13, 4, 640  crossref(new windwow)
8.
Bridge effect of silver nanoparticles on electrochemical performance of graphite nanofiber/polyaniline for supercapacitor, Synthetic Metals, 2012, 162, 23, 2107  crossref(new windwow)
 References
1.
Conway BE. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Plenum Press, New York (1999).

2.
Bao L, Zang J, Li X. Flexible Zn2SnO4/MnO2 core/shell nanocable− carbon microfiber hybrid composites for high-performance supercapacitor electrodes. Nano Lett, 11, 1215 (2011). http://dx.doi. org/10.1021/nl104205s. crossref(new window)

3.
Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater, 7, 845 (2008). http://dx.doi.org/10.1038/nmat2297. crossref(new window)

4.
Frackowiak E, Beguin F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon, 39, 937 (2001). http:// dx.doi.org/10.1016/s0008-6223(00)00183-4. crossref(new window)

5.
Li W, Chen D, Li Z, Shi Y, Wan Y, Wang G, Jiang Z, Zhao D. Nitrogen-containing carbon spheres with very large uniform mesopores: the superior electrode materials for EDLC in organic electrolyte. Carbon, 45, 1757 (2007). http://dx.doi.org/10.1016/j. carbon.2007.05.004. crossref(new window)

6.
Kim KS, Park SJ. Bridge effect of carbon nanotubes on the electrical properties of expanded graphite/poly(ethylene terephthalate) nanocomposites. Carbon Lett, 13, 51 (2012). http://dx.doi. org/10.5714/CL.2012.13.1.051. crossref(new window)

7.
Kim YH, Park SJ. Effect of pre-oxidation of pitch by $H_{2}O_{2}$ on porosity of activated carbons. Appl Chem Eng, 21, 183 (2010).

8.
Kong LB, Lang JW, Liu M, Luo YC, Kang L. Facile approach to prepare loose-packed cobalt hydroxide nano-flakes materials for electrochemical capacitors. J Power Sources, 194, 1194 (2009). http://dx.doi.org/10.1016/j.jpowsour.2009.06.016. crossref(new window)

9.
Seo MK, Saouab A, Park SJ. Effect of annealing temperature on electrochemical characteristics of ruthenium oxide/multi-walled carbon nanotube composites. Mater Sci Eng B, 167, 65 (2010). http://dx.doi.org/10.1016/j.mseb.2010.01.028. crossref(new window)

10.
Wang H, Hao Q, Yang X, Lu L, Wang X. Graphene oxide doped polyaniline for supercapacitors. Electrochem Commun, 11, 1158 (2009). http://dx.doi.org/10.1016/j.elecom.2009.03.036. crossref(new window)

11.
Frackowiak E, Delpeux S, Jurewicz K, Szostak K, Cazorla-Amoros D, Beguin F. Enhanced capacitance of carbon nanotubes through chemical activation. Chem Phys Lett, 361, 35 (2002). http://dx.doi. org/10.1016/s0009-2614(02)00684-x. crossref(new window)

12.
Lee H, Kim H, Cho MS, Choi J, Lee Y. Fabrication of polypyrrole (PPy)/carbon nanotube (CNT) composite electrode on ceramic fabric for supercapacitor applications. Electrochim Acta, 56, 7460 (2011). http://dx.doi.org/10.1016/j.electacta.2011.06.113. crossref(new window)

13.
Li J, Yang QM, Zhitomirsky I. Nickel foam-based manganese dioxide- carbon nanotube composite electrodes for electrochemical supercapacitors. J Power Sources, 185, 1569 (2008). http://dx.doi. org/10.1016/j.jpowsour.2008.07.057. crossref(new window)

14.
Wei Z, Wan M, Lin T, Dai L. Polyaniline nanotubes doped with sulfonated carbon nanotubes made via a self-assembly process. Adv Mater, 15, 136 (2003). http://dx.doi.org/10.1002/adma.200390027. crossref(new window)

15.
Qu S, Wang J, Kong J, Yang P, Chen G. Magnetic loading of carbon nanotube/nano-Fe3O4 composite for electrochemical sensing. Talanta, 71, 1096 (2007). http://dx.doi.org/10.1016/j.talanta. 2006.06.003. crossref(new window)

16.
Park SK, Park SJ, Kim S. Preparation and capacitance behaviors of cobalt oxide/ graphene composites. Carbon Lett, 13, 130 (2012). http://dx.doi.org/10.5714/CL.2012.13.2.130. crossref(new window)

17.
Tao K, Dou H, Sun K. Interfacial coprecipitation to prepare magnetite nanoparticles: concentration and temperature dependence. Colloids Surf Physicochem Eng Aspects, 320, 115 (2008). http:// dx.doi.org/10.1016/j.colsurfa.2008.01.051. crossref(new window)

18.
Zheng Y, Zhang M, Gao P. Preparation and electrochemical properties of multiwalled carbon nanotubes-nickel oxide porous composite for supercapacitors. Mater Res Bull, 42, 1740 (2007). http:// dx.doi.org/10.1016/j.materresbull.2006.11.022. crossref(new window)

19.
Li Y, Tang L, Li J. Preparation and electrochemical performance for methanol oxidation of pt/graphene nanocomposites. Electrochem Commun, 11, 846 (2009). http://dx.doi.org/10.1016/j.elecom. 2009.02.009. crossref(new window)

20.
Rezaul Karim M, Lee CJ, Sarwaruddin Chowdhury AM, Nahar N, Lee MS. Radiolytic synthesis of conducting polypyrrole/carbon nanotube composites. Mater Lett, 61, 1688 (2007). http://dx.doi. org/10.1016/j.matlet.2006.07.100. crossref(new window)

21.
Wu NL, Wang SY, Han CY, Wu DS, Shiue LR. Electrochemical capacitor of magnetite in aqueous electrolytes. J Power Sources, 113, 173 (2003). http://dx.doi.org/10.1016/s0378-7753(02)00482-2. crossref(new window)

22.
Kim DW, Rhee KY, Park SJ. Synthesis of activated carbon nanotube/ copper oxide composites and their electrochemical performance. J Alloys Compd, 530, 6 (2012). http://dx.doi.org/10.1016/j. jallcom.2012.02.157. crossref(new window)