Advanced SearchSearch Tips
Fabrication and Applications of Carbon Nanotube Fibers
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 13, Issue 4,  2012, pp.191-204
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2012.13.4.191
 Title & Authors
Fabrication and Applications of Carbon Nanotube Fibers
Choo, Hungo; Jung, Yeonsu; Jeong, Youngjin; Kim, Hwan Chul; Ku, Bon-Cheol;
  PDF(new window)
Carbon nanotubes (CNTs) have exceptional mechanical, electrical, and thermal properties compared with those of commercialized high-performance fibers. For use in the form of fabrics that can maintain such properties, individual CNTs should be held together in fibers or made into yarns twisted out of the fibers. Typical methods that are used for such purposes include (a) surfactant-based coagulation spinning, which injects a polymeric binder between CNTs to form fibers; (b) liquid-crystalline spinning, which uses the nature of CNTs to form liquid crystals under certain conditions; (c) direct spinning, which can produce CNT fibers or yarns at the same time as synthesis by introducing a carbon source into a vertical furnace; and (d) forest spinning, which draws and twists CNTs grown vertically on a substrate. However, it is difficult for those CNT fibers to express the excellent properties of individual CNTs as they are. As solutions to this problem, post-treatment processes are under development for improving the production process of CNT fibers or enhancing their properties. This paper discusses the recent methods of fabricating CNT fibers and examines some post-treatment processes for property enhancement and their applications.
carbon nanotube fiber;yarn;direct spinning;forest spinning;
 Cited by
Carbon nanotubes-properties and applications: a review,;

Carbon letters, 2013. vol.14. 3, pp.131-144 crossref(new window)
Carbon nanotubes-properties and applications: a review, Carbon letters, 2013, 14, 3, 131  crossref(new windwow)
Highly aligned dense carbon nanotube sheets induced by multiple stretching and pressing, Nanoscale, 2014, 6, 8, 4338  crossref(new windwow)
Laser-Induced Explosion of Nitrated Carbon Nanotubes: Nonadiabatic and Reactive Molecular Dynamics Simulations, Journal of the American Chemical Society, 2016, 138, 49, 15927  crossref(new windwow)
Self-assembly of 3D Carbon Nanotube Sponges: A Simple and Controllable Way to Build Macroscopic and Ultralight Porous Architectures, Advanced Materials, 2016, 29, 1, 1603549  crossref(new windwow)
High Performance Fibers from Carbon Nanotubes: Synthesis, Characterization, and Applications in Composites—A Review, Industrial & Engineering Chemistry Research, 2017, 56, 44, 12407  crossref(new windwow)
Yamamoto T, Watanabe K, Hernandez E. Mechanical properties, thermal stability and heat transport in carbon nanotubes. In: Yamamoto T, Watanabe K, Hernandez E, eds. Carbon nanotubes. Topics in Applied Physics, Vol. 111, Springer, Berlin Heidelberg, 165 (2008). crossref(new window)

Tans SJ, Devoret MH, Dai H, Thess A, Smalley RE, Geerligs LJ, Dekker C. Individual single-wall carbon nanotubes as quantum wires. Nature, 386, 474 (1997). http://dx.doi. org/10.1038/386474a0. crossref(new window)

Hone J, Llaguno MC, Nemes NM, Johnson AT, Fischer JE, Walters DA, Casavant MJ, Schmidt J, Smalley RE. Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films. Appl Phys Lett, 77, 666 (2000). http://dx.doi. org/10.1063/1.127079. crossref(new window)

Baughman RH, Zakhidov AA, de Heer WA. Carbon nanotubes- -the route toward applications. Science, 297, 787 (2002). http:// crossref(new window)

Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science, 287, 637 (2000). http://dx.doi. org/10.1126/science.287.5453.637. crossref(new window)

Frank S, Poncharal P, Wang ZL, de Heer WA. Carbon nanotube quantum resistors. Science, 280, 1744 (1998). 10.1126/science.280.5370.1744. crossref(new window)

Hone J, Whitney M, Zettl A. Thermal conductivity of singlewalled carbon nanotubes. Synth Met, 103, 2498 (1999). http:// crossref(new window)

Berber S, Kwon YK, Tomanek D. Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett, 84, 4613 (2000). http:// crossref(new window)

Li QW, Li Y, Zhang XF, Chikkannanavar SB, Zhao YH, Dangelewicz AM, Zheng LX, Doorn SK, Jia QX, Peterson DE, Arendt PN, Zhu YT. Structure-dependent electrical properties of carbon nanotube fibers. Adv Mater, 19, 3358 (2007). adma.200602966. crossref(new window)

Zhang X, Li Q, Holesinger TG, Arendt PN, Huang J, Kirven PD, Clapp TG, DePaula RF, Liao X, Zhao Y, Zheng L, Peterson DE, Zhu Y. Ultrastrong, stiff, and lightweight carbon-nanotube fibers. Adv Mater, 19, 4198 (2007). adma.200700776. crossref(new window)

Vigolo B, Penicaud A, Coulon C, Sauder C, Pailler R, Journet C, Bernier P, Poulin P. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science, 290, 1331 (2000). http://dx.doi. org/10.1126/science.290.5495.1331. crossref(new window)

Vigolo B, Poulin P, Lucas M, Launois P, Bernier P. Improved structure and properties of single-wall carbon nanotube spun fibers. Appl Phys Lett, 81, 1210 (2002). crossref(new window)

Ericson LM, Fan H, Peng H, Davis VA, Zhou W, Sulpizio J, Wang Y, Booker R, Vavro J, Guthy C, Parra-Vasquez ANG, Kim MJ, Ramesh S, Saini RK, Kittrell C, Lavin G, Schmidt H, Adams WW, Billups WE, Pasquali M, Hwang W-F, Hauge RH, Fischer JE, Smalley RE. Macroscopic, neat, single-walled carbon nanotube fibers. Science, 305, 1447 (2004). 1101398. crossref(new window)

Zhang M, Atkinson KR, Baughman RH. Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science, 306, 1358 (2004). crossref(new window)

Kai L, Yinghui S, Ruifeng Z, Hanyu Z, Jiaping W, Liang L, Shoushan F, Kaili J. Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method. Nanotechnology, 21, 045708 (2010). 4/045708. crossref(new window)

Li YL, Kinloch IA, Windle AH. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science, 304, 276 (2004). crossref(new window)

Motta M, Moisala A, Kinloch IA, Windle AH. High performance fibres from 'dog bone' carbon nanotubes. Adv Mater, 19, 3721 (2007). crossref(new window)

Schutzenberger P, Schutzenberger L. Comptes Rendus Hebdomadaires des Seances de L'Academie des Sciences. Acad Sci Paris, 111, 774 (1890).

Oberlin A, Endo M, Koyama T. Filamentous growth of carbon through benzene decomposition. J Cryst Growth, 32, 335 (1976). crossref(new window)

Ci L, Wei B, Liang J, Xu C, Wu D. Preparation of carbon nanotubules by the floating catalyst method. J Mater Sci Lett, 18, 797 (1999). crossref(new window)

Ci L, Li Y, Wei B, Liang J, Xu C, Wu D. Preparation of carbon nanofibers by the floating catalyst method. Carbon, 38, 1933 (2000). crossref(new window)

Zhong XH, Li YL, Liu YK, Qiao XH, Feng Y, Liang J, Jin J, Zhu L, Hou F, Li JY. Continuous multilayered carbon nanotube yarns. Adv Mater, 22, 692 (2010). crossref(new window)

Lee J, Jung Y, Song J, Kim JS, Lee GW, Jeong HJ, Jeong Y. Highperformance field emission from a carbon nanotube carpet. Carbon, 50, 3889 (2012). crossref(new window)

Nanocomp Technologies, Inc. [Internet]. Available from:

Motta M, Kinloch I, Moisala A, Premnath V, Pick M, Windle A. The parameter space for the direct spinning of fibres and films of carbon nanotubes. Physica E, 37, 40 (2007). http://dx.doi. org/10.1016/j.physe.2006.07.005. crossref(new window)

Jung YS, Song JY, Cho DH, Hu WS, Jeong YJ. Controlled production of carbon nanotube fibers. Carbon, submitted.

Sundaram RM, Koziol KKK, Windle AH. Continuous direct spinning of fibers of single-walled carbon nanotubes with metallic chirality. Adv Mater, 23, 5064 (2011). adma.201102754. crossref(new window)

Kitiyanan B, Alvarez WE, Harwell JH, Resasco DE. Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co-Mo catalysts. Chem Phys Lett, 317, 497 (2000). crossref(new window)

Herrera JE, Resasco DE. Loss of single-walled carbon nanotubes selectivity by disruption of the Co-Mo interaction in the catalyst. J Catal, 221, 354 (2004). jcat.2003.08.005. crossref(new window)

Alvarez WE, Pompeo F, Herrera JE, Balzano L, Resasco DE. Characterization of single-walled carbon nanotubes (SWNTs) produced by CO disproportionation on Co−Mo catalysts. Chem Mater, 14, 1853 (2002). crossref(new window)

Endo M, Takeuchi K, Kobori K, Takahashi K, Kroto HW, Sarkar A. Pyrolytic carbon nanotubes from vapor-grown carbon fibers. Carbon, 33, 873 (1995). 6223(95)00016-7. crossref(new window)

Conroy D, Moisala A, Cardoso S, Windle A, Davidson J. Carbon nanotube reactor: ferrocene decomposition, iron particle growth, nanotube aggregation and scale-up. Chem Eng Sci, 65, 2965 (2010). crossref(new window)

Motta MS, Moisala A, Kinloch IA, Windle AH. The role of sulphur in the synthesis of carbon nanotubes by chemical vapour deposition at high temperatures. J Nanosci Nanotechnol, 8, 2442 (2008). crossref(new window)

Zhang X, Jiang K, Feng C, Liu P, Zhang L, Kong J, Zhang T, Li Q, Fan S. Spinning and processing continuous yarns from 4-inch wafer scale super-aligned carbon nanotube arrays. Adv Mater, 18, 1505 (2006). crossref(new window)

Jiang K, Li Q, Fan S. Nanotechnology: spinning continuous carbon nanotube yarns. Nature, 419, 801 (2002). http://dx.doi. org/10.1038/419801a. crossref(new window)

Zhang M, Fang S, Zakhidov AA, Lee SB, Aliev AE, Williams CD, Atkinson KR, Baughman RH. Strong, transparent, multifunctional, carbon nanotube sheets. Science, 309, 1215 (2005). http://dx.doi. org/10.1126/science.1115311. crossref(new window)

Jia J, Zhao J, Xu G, Di J, Yong Z, Tao Y, Fang C, Zhang Z, Zhang X, Zheng L, Li Q. A comparison of the mechanical properties of fibers spun from different carbon nanotubes. Carbon, 49, 1333 (2011). crossref(new window)

Wei Y, Jiang K, Feng X, Liu P, Liu L, Fan S. Comparative studies of multiwalled carbon nanotube sheets before and after shrinking. Phys Rev B, 76, 045423 (2007). crossref(new window)

Vijaya KR, Mohammed Y, Shaik J, Merlyn XP, Valery NK. Alignment of carbon nanotubes and reinforcing effects in nylon-6 polymer composite fibers. Nanotechnology, 19, 245703 (2008). http:// crossref(new window)

Lanticse LJ, Tanabe Y, Matsui K, Kaburagi Y, Suda K, Hoteida M, Endo M, Yasuda E. Shear-induced preferential alignment of carbon nanotubes resulted in anisotropic electrical conductivity of polymer composites. Carbon, 44, 3078 (2006). http://dx.doi. org/10.1016/j.carbon.2006.05.008. crossref(new window)

Gommans HH, Alldredge JW, Tashiro H, Park J, Magnuson J, Rinzler AG. Fibers of aligned single-walled carbon nanotubes: polarized Raman spectroscopy. J Appl Phys, 88, 2509 (2000). http:// crossref(new window)

Pichot V, Burghammer M, Badaire S, Zakri C, Riekel C, Poulin P, Launois P. X-ray microdiffraction study of single-walled carbon nanotube alignment across a fibre. Europhys Lett, 79, 46002 (2007). crossref(new window)

Miao M. Production, structure and properties of twistless carbon nanotube yarns with a high density sheath. Carbon, 50, 4973 (2012). crossref(new window)

Kuznetsov AA, Fonseca AF, Baughman RH, Zakhidov AA. Structural model for dry-drawing of sheets and yarns from carbon nanotube forests. ACS Nano, 5, 985 (2011). nn102405u. crossref(new window)

Iijima T, Oshima H, Hayashi Y, Suryavanshi UB, Hayashi A, Tanemura M. In-situ observation of carbon nanotube fiber spinning from vertically aligned carbon nanotube forest. Diamond Relat Mater, 24, 158 (2012). crossref(new window)

Koziol K, Vilatela J, Moisala A, Motta M, Cunniff P, Sennett M, Windle A. High-performance carbon nanotube fiber. Science, 318, 1892 (2007). crossref(new window)

Sabelkin V, Misak HE, Mall S, Asmatulu R, Kladitis PE. Tensile loading behavior of carbon nanotube wires. Carbon, 50, 2530 (2012). crossref(new window)

Miao M, McDonnell J, Vuckovic L, Hawkins SC. Poisson's ratio and porosity of carbon nanotube dry-spun yarns. Carbon, 48, 2802 (2010). crossref(new window)

Sears K, Skourtis C, Atkinson K, Finn N, Humphries W. Focused ion beam milling of carbon nanotube yarns to study the relationship between structure and strength. Carbon, 48, 4450 (2010). crossref(new window)

Cai JY, Min J, McDonnell J, Church JS, Easton CD, Humphries W, Lucas S, Woodhead AL. An improved method for functionalisation of carbon nanotube spun yarns with aryldiazonium compounds. Carbon, 50, 4655 (2012). 2012.05.055. crossref(new window)

Boncel S, Sundaram RM, Windle AH, Koziol KKK. Enhancement of the mechanical properties of directly spun CNT fibers by chemical treatment. ACS Nano, 5, 9339 (2011). http://dx.doi. org/10.1021/nn202685x. crossref(new window)

Miao M, Hawkins SC, Cai JY, Gengenbach TR, Knott R, Huynh CP. Effect of gamma-irradiation on the mechanical properties of carbon nanotube yarns. Carbon, 49, 4940 (2011). http://dx.doi. org/10.1016/j.carbon.2011.07.026. crossref(new window)

Liu K, Sun Y, Lin X, Zhou R, Wang J, Fan S, Jiang K. Scratchresistant, highly conductive, and high-strength carbon nanotubebased composite yarns. ACS Nano, 4, 5827 (2010). http://dx.doi. org/10.1021/nn1017318. crossref(new window)

Song SN, Wang XK, Chang RPH, Ketterson JB. Electronic properties of graphite nanotubules from galvanomagnetic effects. Phys Rev Lett, 72, 697 (1994). 72.697. crossref(new window)

Bachtold A, Henny M, Terrier C, Strunk C, Schonenberger C, Salvetat JP, Bonard JM, Forro L. Contacting carbon nanotubes selectively with low-ohmic contacts for four-probe electric measurements. Appl Phys Lett, 73, 274 (1998). 10.1063/1.121778. crossref(new window)

Dai H, Wong EW, Lieber CM. Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes. Science, 272, 523 (1996). crossref(new window)

Berger C, Yi Y, Wang ZL, de Heer WA. Multiwalled carbon nanotubes are ballistic conductors at room temperature. Appl Phys A, 74, 363 (2002). crossref(new window)

Lee RS, Kim HJ, Fischer JE, Thess A, Smalley RE. Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br. Nature, 388, 255 (1997). crossref(new window)

Randeniya LK, Bendavid A, Martin PJ, Tran CD. Composite yarns of multiwalled carbon nanotubes with metallic electrical conductivity. Small, 6, 1806 (2010). smll.201000493. crossref(new window)

Dalton AB, Collins S, Munoz E, Razal JM, Ebron VH, Ferraris JP, Coleman JN, Kim BG, Baughman RH. Super-tough carbon-nanotube fibres. Nature, 423, 703 (2003). http://dx.doi. org/10.1038/423703a. crossref(new window)

Mizuno K, Ishii J, Kishida H, Hayamizu Y, Yasuda S, Futaba DN, Yumura M, Hata K. A black body absorber from vertically aligned single-walled carbon nanotubes. Proc Natl Acad Sci, 106, 6044 (2009). crossref(new window)

Park G, Jung Y, Lee GW, Hinestroza J, Jeong Y. Carbon nanotube/ poly(vinyl alcohol) fibers with a sheath-core structure prepared by wet spinning. Fibers Polym, 13, 874 (2012). http://dx.doi. org/10.1007/s12221-012-0874-5. crossref(new window)

Airforce Technology. Tech Trends: The shrinking size of the cable (15 October 2009) [Internet]. Available from: http://www.airforcetechnology. com/features/feature66825.

Zhao Y, Wei J, Vajtai R, Ajayan PM, Barrera EV. Iodine doped carbon nanotube cables exceeding specific electrical conductivity of metals. Sci Rep, 1, 83 (2011). crossref(new window)

Nanotechweb. Carbon nanotubes extend superbridge design (May 30, 2008) [Internet]. Available from: article/tech/34424.

PhysOrg. Long, stretchy carbon nanotubes could make space elevators possible (Jan 23, 2009) [Internet]. Available from: http://

Kausala M, Zhang LC. Ballistic resistance capacity of carbon nanotubes. Nanotechnology, 18, 475701 (2007). http://dx.doi. org/10.1088/0957-4484/18/47/475701. crossref(new window)