Advanced SearchSearch Tips
Parametric Study of Methanol Chemical Vapor Deposition Growth for Graphene
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 13, Issue 4,  2012, pp.205-211
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2012.13.4.205
 Title & Authors
Parametric Study of Methanol Chemical Vapor Deposition Growth for Graphene
Cho, Hyunjin; Lee, Changhyup; Oh, In Seoup; Park, Sungchan; Kim, Hwan Chul; Kim, Myung Jong;
  PDF(new window)
Methanol as a carbon source in chemical vapor deposition (CVD) graphene has an advantage over methane and hydrogen in that we can avoid optimizing an etching reagent condition. Since methanol itself can easily decompose into hydrocarbon and water (an etching reagent) at high temperatures [1], the pressure and the temperature of methanol are the only parameters we have to handle. In this study, synthetic conditions for highly crystalline and large area graphene have been optimized by adjusting pressure and temperature; the effect of each parameter was analyzed systematically by Raman, scanning electron microscope, transmission electron microscope, atomic force microscope, four-point-probe measurement, and UV-Vis. Defect density of graphene, represented by D/G ratio in Raman, decreased with increasing temperature and decreasing pressure; it negatively affected electrical conductivity. From our process and various analyses, methanol CVD growth for graphene has been found to be a safe, cheap, easy, and simple method to produce high quality, large area, and continuous graphene films.
graphene;synthesis;methanol;low pressure chemical vapor deposition;large area;
 Cited by
Direct growth of GaN layer on carbon nanotube-graphene hybrid structure and its application for light emitting diodes, Scientific Reports, 2015, 5, 1  crossref(new windwow)
Growth kinetics of white graphene (h-BN) on a planarised Ni foil surface, Scientific Reports, 2015, 5, 1  crossref(new windwow)
Improving the graphene electrode performance in ultra-violet light emitting diode using silver nanowire networks, Optical Materials Express, 2015, 5, 2, 314  crossref(new windwow)
Graphene-GaN Schottky diodes, Nano Research, 2015, 8, 4, 1327  crossref(new windwow)
Graphene–Carbon–Metal Composite Film for a Flexible Heat Sink, ACS Applied Materials & Interfaces, 2017, 9, 46, 40801  crossref(new windwow)
Oshima H, Suzuki Y, Shimazu T, Maruyama S. Novel and simple synthesis method for submillimeter long vertically aligned singlewalled carbon nanotubes by no-flow alcohol catalytic chemical vapor deposition. Jpn J Appl Phys, 47, 1982 (2008). http://dx.doi. org/10.1143/JJAP.47.1982. crossref(new window)

Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science, 306, 666 (2004). http://dx.doi. org/10.1126/science.1102896. crossref(new window)

Gaim AK, Novoselov KS. The rise of graphene. Nat Mater, 6, 183 (2007). crossref(new window)

Rocha CG, Rummeli MH, Ibrahim I, Sevincli H, Borrnert F, Kunstmamn J, Bachmatiuk A, Potschke M, Li W, Makharza SAM, Roche S, Buchner B, Cuniberti G. Tailoring the physical properties of graphene. In: Choi W, Lee JW, eds. Graphene: synthesis and applications. Nanomaterials and their applications, CRC Press, Boca Raton, 1 (2012).

Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, Mc- Govern IT, Holland B, Byrne M, Gun'Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol, 3, 563 (2008). crossref(new window)

Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457, 706 (2009). crossref(new window)

Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS. Large-area synthesis of high quality and uniform graphene films on copper foils. Science, 324, 1312 (2009). 1171245. crossref(new window)

Lu X, Yu M, Huang H, Rouff RS. Tailoring graphite with the goal of achieving single sheets. Nanotechnology, 10, 269 (1999). http:// crossref(new window)

Berger C, Song Z, Li T, Li X, Ogbazghi AY, Feng R, Dai Z, Marchenokov AN, Conrad EH, First PN, de Heer WA. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene based nanoelectronics. J Phys Chem B, 108, 19912 (2004). http:// crossref(new window)

Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Balakrishnan J, Lei T, Kim HR, Song YI, Kim YJ, Kim KS, Ozyilmaz B, Ahn JH, Hong BH, Iijima S. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol, 5, 574 (2010). crossref(new window)

Lee SK, Kim BJ, Jang H, Yoon SC, Lee C, Hong BH, Rogers JA, Cho JH, Ahn JH. Stretchable graphene transistors with printed dielectrics and gate electrodes. Nano Lett, 11, 4642 (2011). http:// crossref(new window)

Kim RH, Bae MH, Kim DG, Cheng H, Kim BH, Kim DH, Li M, Wu J, Du F, Kim HS, Kim S, Estrada D, Hong SW, Huang Y, Pop E, Rogers JA. Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates. Nano Lett, 11, 3881 (2011). nl202000u. crossref(new window)

Kang J, Kim H, Kim KK, Lee SK, Bae S, Ahn JH, Kim YJ, Choi JB, Hong BH. High-performance graphene-based transparent flexible heaters. Nano Lett, 11, 5154 (2011). nl202311v. crossref(new window)

Yoo JJ, Balakrishnan K, Huang J, Meunier V, Sumpter BG, Srivastava A, Conway M, Mohana Reddy AL, Yu J, Vajtai R, Ajayan PM. Ultrathin planar graphene supercapacitors. Nano Lett, 11, 1423 (2011). crossref(new window)

Wang Y, Yang R, Shi Z, Zhang L, Shi D, Wang E, Zhang G. Superelastic graphene ripples for flexible strain sensors. ACS Nano, 5, 3645 (2011). crossref(new window)

Bunch JS, Verbridge SS, Alden JS, van der Zande AM, Parpia JM, Craighead HG, McEuen PL. Impermeable atomic membranes from graphene sheets. Nano Lett, 8, 2458 (2008). http://dx.doi. org/10.1021/nl801457b. crossref(new window)

Wang Z, Zhang Z, Xu H, Ding L, Wang S, Peng LM. A high performance top-gate graphene field-effect transistor based frequency doubler. Appl Phys Lett, 96, 173104 (2010). http://dx.doi. org/10.1063/1.3413959. crossref(new window)

Jang BZ, Zhamu A. Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review. J Mater Sci, 43, 5092 (2008). crossref(new window)

Miyata Y, Kamon K, Ohashi K, Kitaura R, Yoshimura M, Shinohara H. A simple alcohol-chemical vapor deposition synthesis of single-layer graphenes using flash cooling. Appl Phys Lett, 96, 263105 (2010). crossref(new window)

Srivastava A, Galande C, Ci L, Song L, Rai C, Jariwala D, Kelly KF, Ajayan PM. Novel liquid precursor-based facile synthesis of large-area continuous, single and few-layer graphene films. Chem Mater, 22, 3457 (2010). crossref(new window)

Dong X, Wang P, Fang W, Su CY, Chen YH, Li LJ, Huang W, Chen P. Growth of large-sized graphene thin-films by liquid precursor- based chemical vapor deposition under atmospheric pressure. Carbon, 49, 3672 (2011). 2011.04.069. crossref(new window)

Guermoune A, Chari T, Popescu F, Sabri SS, Guillemette J, Skulason HS, Szkopek T, Siaj M. Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors. Carbon, 49, 4204 (2011). carbon.2011.05.054. crossref(new window)

Nair RR, Blake P, Grigorenko AN, Noboselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK. Fine structure constant defines visual transparency of graphene. Science, 320, 1308 (2008). http://dx.doi. org/10.1126/science.1156965. crossref(new window)

Li X, Cai W, Colombo L, Rouff RS, Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett, 9, 4268 (2009). crossref(new window)

Li X, Zhu Y, Cai W, Borysiak M, Han B, Chen D, Piner RD, Colombo L, Ruoff RS. Transfer of large-area graphene films for highperformance transparent conductive electrodes. Nano Lett, 9, 4359 (2009). crossref(new window)

Zhang Y, Gao T, Gao Y, Xie S, Ji Q, Yan K, Peng H, Liu Z. Defectlike structures of graphene on copper foils for strain relief investigated by high-resolution scanning tunneling microscopy. ACS Nano, 5, 4014 (2011). crossref(new window)

Tuinstra F, Koenig JL, Raman spectrum of graphite. J Chem Phys, 53, 1126 (1970). crossref(new window)

Nemanich RJ, Solin SA. First- and second-order Raman scatter ing from finite-size crystals of graphite. Phys Rev B, 20, 2 (1979). crossref(new window)

Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK. Raman spectrum of graphene and graphene layers. Phys Rev Lett, 97, 187401 (2006). crossref(new window)

Li X, Magnuson CW, Venugopal A, Tromp RM, Hannon JB, Vogel EM, Colombo L, Ruoff RS. Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J Am Chem Soc, 133, 2816 (2011). http://dx.doi. org//10.1021/ja109793s. crossref(new window)

Dai H. Nanotube growth and characterization. In: Dresselhaus MS, Dresselhaus G, Avouris P, eds. Carbon nanotubes: synthesis, structure, properties, and applications. Topics in Applied Physics, Vol. 80, Springer, New York, 29 (2001). 540-39947-X_3. crossref(new window)