Advanced SearchSearch Tips
Improved Electrical Conductivity of a Carbon Nanotube Mat Composite Prepared by In-Situ Polymerization and Compression Molding with Compression Pressure
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 13, Issue 4,  2012, pp.243-247
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2012.13.4.243
 Title & Authors
Improved Electrical Conductivity of a Carbon Nanotube Mat Composite Prepared by In-Situ Polymerization and Compression Molding with Compression Pressure
Noh, Ye Ji; Kim, Han Sang; Kim, Seong Yun;
  PDF(new window)
A fabrication method to improve the processability of thermoplastic carbon nanotube (CNT) mat composites was investigated by using in-situ polymerizable and low viscous cyclic butylene terephthalate oligomers. The electrical conductivity of the CNT mat composites strongly depended on the compression pressure, and the trend can be explained in terms of two cases, low and high compression pressure, respectively. High CNT mat content in the CNT mat composites and the surface of the CNT mat composites with fully contacted CNTs was achieved under high compression pressure, and direct contact between four probes and the surface of the CNT mat composites with fully contacted CNTs gave resistance of . In this study the maximum electrical conductivity of the CNT mat composites, obtained under a maximum applied compression pressure of 27 MPa, was 11 904 S , where the weight fraction of the CNT mat was 36.5%.
carbon nanotube mat;composite;cyclic butylene terephthalate;electrical conductivity;
 Cited by
Carbon Nanotube Mat Reinforced Thermoplastic Composites with a Polymerizable, Low-Viscosity Cyclic Butylene Terephthalate Matrix,Noh, Ye Ji;Kim, Han Sang;Kim, Seong Yun;

Macromolecular research, 2014. vol.22. 11, pp.1183-1189 crossref(new window)
무전해 니켈도금된 다중벽 탄소나노튜브의 첨가가 알루미나강화 에폭시 복합재료의 열전도도 및 파괴인성에 미치는 영향,최정란;이영실;박수진;

폴리머, 2013. vol.37. 4, pp.449-454 crossref(new window)
Novel Method of Evaluating the Purity of Multiwall Carbon Nanotubes Using Raman Spectroscopy, Journal of Nanomaterials, 2013, 2013, 1  crossref(new windwow)
Carbon nanotube mat reinforced thermoplastic composites with a polymerizable, low-viscosity cyclic butylene terephthalate matrix, Macromolecular Research, 2014, 22, 11, 1183  crossref(new windwow)
Single-walled carbon nanotube networks in conductive composite materials, Faraday Discuss., 2014  crossref(new windwow)
Highly dispersible aligned multiwall carbon nanotube bundles and their optimum length for electrically conductive applications, Synthetic Metals, 2013, 185-186, 45  crossref(new windwow)
Influence of Electroless Ni-plated MWCNTs on Thermal Conductivity and Fracture Toughness of MWCNTs/Al2O3/Epoxy Composites, Polymer Korea, 2013, 37, 4, 449  crossref(new windwow)
A Review of the Recent Advances in Cyclic Butylene Terephthalate Technology and its Composites, Critical Reviews in Solid State and Materials Sciences, 2016, 1  crossref(new windwow)
Whitten PG, Spinks GM, Wallace GG. Mechanical properties of carbon nanotube paper in ionic liquid and aqueous electrolytes. Carbon, 43, 1891 (2005). 2005.02.038. crossref(new window)

Cooper SM, Chuang HF, Cinke M, Cruden BA, Meyyappan M. Gas permeability of a buckypaper membrane. Nano Lett, 3, 189 (2003). crossref(new window)

Baughman RH, Cui C, Zakhidov AA, Iqbal Z, Barisci JN, Spinks GM, Wallace GG, Mazzoldi A, De Rossi D, Rinzler AG, Jaschinski O, Roth S, Kertesz M. Carbon nanotube actuators. Science, 284, 1340 (1999). crossref(new window)

Prasad D, Zhiling L, Satish N, Barrera EV. Nanotube film based on single-wall carbon nanotubes for strain sensing. Nanotechnology, 15, 379 (2004). crossref(new window)

Knapp W, Schleussner D. Field-emission characteristics of carbon buckypaper. 21, 557 (2003). crossref(new window)

Wang Z, Liang Z, Wang B, Zhang C, Kramer L. Processing and property investigation of single-walled carbon nanotube (SWNT) buckypaper/epoxy resin matrix nanocomposites. Composites A: Appl Sci Manuf, 35, 1225 (2004). 2003.09.029. crossref(new window)

Shiren W, Zhiyong L, Giang P, Young-Bin P, Ben W, Chuck Z, Leslie K, Percy F. Controlled nanostructure and high loading of single-walled carbon nanotubes reinforced polycarbonate composite. Nanotechnology, 18, 095708 (2007). http://dx.doi. org/10.1088/0957-4484/18/9/095708. crossref(new window)

Frizzell CJ, in het Panhuis M, Coutinho DH, Balkus KJ Jr., Minett AI, Blau WJ, Coleman JN. Reinforcement of macroscopic carbon nanotube structures by polymer intercalation: The role of polymer molecular weight and chain conformation. Phys Rev B, 72, 245420 (2005). crossref(new window)

Coleman JN, Blau WJ, Dalton AB, Munoz E, Collins S, Kim BG, Razal J, Selvidge M, Vieiro G, Baughman RH. Improving the mechanical properties of single-walled carbon nanotube sheets by intercalation of polymeric adhesives. Appl Phys Lett, 82, 1682 (2003). crossref(new window)

Lahiff E, Leahy R, Coleman JN, Blau WJ. Physical properties of novel free-standing polymer-nanotube thin films. Carbon, 44, 1525 (2006). crossref(new window)

Song L, Zhang H, Zhang Z, Xie S. Processing and performance improvements of SWNT paper reinforced PEEK nanocomposites. Composites Part A: Appl Sci Manuf, 38, 388 (2007). http://dx.doi. org/10.1016/j.compositesa.2006.03.007. crossref(new window)

Ashrafi B, Guan J, Mirjalili V, Hubert P, Simard B, Johnston A. Correlation between Young's modulus and impregnation quality of epoxy-impregnated SWCNT buckypaper. Composites Part A: Appl Sci Manuf, 41, 1184 (2010). 2010.04.018. crossref(new window)

Giang TP, Young-Bin P, Shiren W, Zhiyong L, Ben W, Chuck Z, Percy F, Leslie K. Mechanical and electrical properties of polycarbonate nanotube buckypaper composite sheets. Nanotechnology, 19, 325705 (2008). 4484/19/32/325705. crossref(new window)

Kim HS. Processing and characterization of carbon nanotube mat/ epoxy composites. Met Mater Int, 17, 697 (2011). http://dx.doi. org/10.1007/s12540-011-1001-7. crossref(new window)

Lashmore D, Brown J, Chaffee J, Resnicoff B, Antoinette P. US Patent, 20070036709 (2006).

Cheng Q, Bao J, Park J, Liang Z, Zhang C, Wang B. High mechanical performance composite conductor: multi-walled carbon nanotube sheet/bismaleimide nanocomposites. Adv Funct Mater, 19, 3219 (2009). crossref(new window)

Parton H, Baets J, Lipnik P, Goderis B, Devaux J, Verpoest I. Prop erties of poly(butylene terephthatlate) polymerized from cyclic oligomers and its composites. Polymer, 46, 9871 (2005). http:// crossref(new window)

American Society for Testing and Materials. ASTM D257 data sheet, standard test methods for DC resistance or conductance of insulating materials. Available from: