JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Recent Advances in Carbon-Nanotube-Based Epoxy Composites
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 14, Issue 1,  2013, pp.1-13
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2012.14.1.001
 Title & Authors
Recent Advances in Carbon-Nanotube-Based Epoxy Composites
Jin, Fan-Long; Park, Soo-Jin;
  PDF(new window)
 Abstract
Carbon nanotubes (CNTs) are increasingly attracting scientific and industrial interest because of their outstanding characteristics, such as a high Young's modulus and tensile strength, low density, and excellent electrical and thermal properties. The incorporation of CNTs into polymer matrices greatly improves the electrical, thermal, and mechanical properties of the materials. Surface modification of CNTs can improve their processibility and dispersion within the composites. This paper aims to review the surface modification of CNTs, processing technologies, and mechanical and electrical properties of CNT-based epoxy composites.
 Keywords
carbon nanotubes;surface modification;electrical properties;composites;mechanical properties;
 Language
English
 Cited by
1.
Carbon nanotubes-properties and applications: a review,;

Carbon letters, 2013. vol.14. 3, pp.131-144 crossref(new window)
2.
Micro-Raman characterization of isolated single wall carbon nanotubes synthesized using Xylene,;

Carbon letters, 2013. vol.14. 3, pp.175-179 crossref(new window)
3.
무전해 니켈도금된 다중벽 탄소나노튜브의 첨가가 알루미나강화 에폭시 복합재료의 열전도도 및 파괴인성에 미치는 영향,최정란;이영실;박수진;

폴리머, 2013. vol.37. 4, pp.449-454 crossref(new window)
4.
Modifications of mechanical, thermal, and electrical characteristics of epoxy through dispersion of multi-walled carbon nanotubes in supercritical carbon dioxide,;;;;;;;

Carbon letters, 2013. vol.14. 4, pp.218-227 crossref(new window)
5.
$TiO_2$ photocatalyst for water treatment applications,;;

Journal of Industrial and Engineering Chemistry, 2013. vol.19. 6, pp.1761-1769 crossref(new window)
6.
A study on thermal conductivity of electroless Ni-B plated multi-walled carbon nanotubes-reinforced composites,;;;

Journal of Industrial and Engineering Chemistry, 2014. vol.20. 5, pp.3421-3424 crossref(new window)
7.
Properties of multi-walled carbon nanotube reinforced epoxy composites fabricated by using sonication and shear mixing,;;;;

Carbon letters, 2014. vol.15. 4, pp.255-261 crossref(new window)
8.
Synthesis and application of epoxy resins: A review,;;;

Journal of Industrial and Engineering Chemistry, 2015. vol.29. pp.1-11 crossref(new window)
1.
Novel Method of Evaluating the Purity of Multiwall Carbon Nanotubes Using Raman Spectroscopy, Journal of Nanomaterials, 2013, 2013, 1  crossref(new windwow)
2.
Properties of multi-walled carbon nanotube reinforced epoxy composites fabricated by using sonication and shear mixing, Carbon letters, 2014, 15, 4, 255  crossref(new windwow)
3.
Preparation and characterization of carbon fiber-reinforced thermosetting composites: a review, Carbon letters, 2015, 16, 2, 67  crossref(new windwow)
4.
Interaction mechanism between serine functional groups and single-walled carbon nanotubes, Journal of Physical Organic Chemistry, 2016, 29, 2, 69  crossref(new windwow)
5.
Structure and property of multiple amino acids assembled on the surface of a CNT, Physica E: Low-dimensional Systems and Nanostructures, 2017, 85, 7  crossref(new windwow)
6.
Carbon nanotubes-properties and applications: a review, Carbon letters, 2013, 14, 3, 131  crossref(new windwow)
7.
Synthesis and application of epoxy resins: A review, Journal of Industrial and Engineering Chemistry, 2015, 29, 1  crossref(new windwow)
8.
A study on thermal conductivity of electroless Ni–B plated multi-walled carbon nanotubes-reinforced composites, Journal of Industrial and Engineering Chemistry, 2014, 20, 5, 3421  crossref(new windwow)
9.
TiO2 photocatalyst for water treatment applications, Journal of Industrial and Engineering Chemistry, 2013, 19, 6, 1761  crossref(new windwow)
10.
Modifications of mechanical, thermal, and electrical characteristics of epoxy through dispersion of multi-walled carbon nanotubes in supercritical carbon dioxide, Carbon letters, 2013, 14, 4, 218  crossref(new windwow)
11.
A morphological and structural approach to evaluate the electromagnetic performances of composites based on random networks of carbon nanotubes, Journal of Applied Physics, 2014, 115, 15, 154311  crossref(new windwow)
12.
Highly dispersible aligned multiwall carbon nanotube bundles and their optimum length for electrically conductive applications, Synthetic Metals, 2013, 185-186, 45  crossref(new windwow)
13.
Phenylethynyl-terminated polyimide, exfoliated graphite nanoplatelets, and the composites: an overview, Carbon letters, 2016, 19, 1  crossref(new windwow)
14.
Thermal properties and non-isothermal curing kinetics of carbon nanotubes/ionic liquid/epoxy resin systems, Thermochimica Acta, 2015, 618, 18  crossref(new windwow)
15.
Effects of sonochemical modification of carbon nanotubes on electrical and electromagnetic shielding properties of epoxy composites, Composites Science and Technology, 2015, 106, 85  crossref(new windwow)
16.
Synergistic bond strengthening in epoxy adhesives using polydopamine/MWCNT hybrids, Polymer, 2016, 82, 285  crossref(new windwow)
17.
Influence of Electroless Ni-plated MWCNTs on Thermal Conductivity and Fracture Toughness of MWCNTs/Al2O3/Epoxy Composites, Polymer Korea, 2013, 37, 4, 449  crossref(new windwow)
18.
Fabrication and Characterization of High Performance Diglycidyl Ether of Bisphenol-A/ Tetrabromobisphenol-A Blend Reinforced with Multi-Walled Carbon Nanotube Composite, Polymer-Plastics Technology and Engineering, 2016  crossref(new windwow)
 References
1.
Bauer RS. Preface. In: Bauer RS, ed. Epoxy resin chemistry, ACS Symposium Series Vol. 114, American Chemical Society, Washington, DC, ix (1979). http://dx.doi.org/10.1021/bk-1979-0114.pr001. crossref(new window)

2.
Serrano E, Tercjak A, Kortaberria G, Pomposo JA, Mecerreyes D, Zafeiropoulos NE, Stamm M, Mondragon I. Nanostructured thermosetting systems by modification with epoxidized styrene−butadiene star block copolymers. Effect of epoxidation degree. Macromolecules, 39, 2254 (2006). http://dx.doi.org/10.1021/ma0515477. crossref(new window)

3.
Chen JL, Jin FL, Park SJ. Thermal stability and impact and flexural properties of epoxy resins/epoxidized castor oil/nano-$CaCO_3$ ternary systems. Macromol Res, 18, 862 (2010). http://dx.doi.org/10.1007/s13233-010-0911-4. crossref(new window)

4.
Jin FL, Park SJ. Thermal stability of trifunctional epoxy resins modified with nanosized calcium carbanate. Bull Korean Chem Soc, 30, 334 (2009). http://dx.doi.org/10.5012/bkcs.2009.30.2.334. crossref(new window)

5.
Iijima S. Helical microtubules of graphitic carbon. Nature, 354, 56 (1991). http://dx.doi.org/10.1038/354056a0. crossref(new window)

6.
Ajayan PM, Stephan O, Colliex C, Trauth D. Aligned carbon nanotube arrays formed by cutting a polymer resin--nanotube composite. Science, 265, 1212 (1994). http://dx.doi.org/10.1126/science.265.5176.1212. crossref(new window)

7.
Zhang J, Zou H, Qing Q, Yang Y, Li Q, Liu Z, Guo X, Du Z. Effect of chemical oxidation on the structure of single-walled car-bon nanotubes. J Phys Chem B, 107, 3712 (2003). http://dx.doi.org/10.1021/jp027500u. crossref(new window)

8.
Hong J, Park DW, Shim SE. A review on thermal conductivity of polymer composites using carbon-based fillers: carbon nanotubes and carbon fibers. Carbon Lett, 11, 347 (2010). http://dx.doi.org/10.5714/CL.2010.11.4.347. crossref(new window)

9.
Jin FL, Park SJ. A review of the preparation and properties of carbon nanotubes-reinforced polymer compositess. Carbon Lett, 12, 57 (2011). http://dx.doi.org/10.5714/CL.2011.12.2.057. crossref(new window)

10.
Zhang X, Zhang J, Wang R, Liu Z. Cationic surfactant directed polyaniline/CNT nanocables: synthesis, characterization, and enhanced electrical properties. Carbon, 42, 1455 (2004). http://dx.doi.org/10.1016/j.carbon.2004.01.003. crossref(new window)

11.
Spitalsky Z, Tasis D, Papagelis K, Galiotis C. Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci, 35, 357 (2010). http://dx.doi.org/10.1016/j.progpolymsci.2009.09.003. crossref(new window)

12.
Kim KS, Park SJ. Influence of enhanced dispersity of chemically treated MWNTs on physical properties of MWNTs/PVDF films. Macromol Res, 18, 981 (2010). crossref(new window)

13.
Lee YS, Im JS, Yun SM, Nho YC, Kang PH, Jin H. X-ray photoelectron spectroscopic analysis of modified MWCNT and dynamic mechanical properties of e-beam cured epoxy resins with the MWCNT. Carbon Lett, 10, 314 (2009). http://dx.doi.org/10.5714/CL.2009.10.4.314. crossref(new window)

14.
Sahoo NG, Rana S, Cho JW, Li L, Chan SH. Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci, 35, 837 (2010). http://dx.doi.org/10.1016/j.progpolymsci.2010.03.002. crossref(new window)

15.
Jung HT, Cho Y, Kim T, Kim TA, Park M. Preparation of amineepoxy adducts(AEA)/thin multiwalled carbon nanotubes (MWCNTs) composite particles using dry processes. Carbon Lett, 11, 107 (2010). http://dx.doi.org/10.5714/CL.2010.11.2.107. crossref(new window)

16.
Hsu SH, Wu MC, Chen S, Chuang CM, Lin SH, Su WF. Synthesis, morphology and physical properties of multi-walled carbon nanotube/ biphenyl liquid crystalline epoxy composites. Carbon, 50, 896 (2012). http://dx.doi.org/10.1016/j.carbon.2011.09.051. crossref(new window)

17.
Jin FL, Ma CJ, Park SJ. Thermal and mechanical interfacial properties of epoxy composites based on functionalized carbon nanotubes. Mater Sci Eng A, 528, 8517 (2011). http://dx.doi.org/10.1016/j.msea.2011.08.054. crossref(new window)

18.
Liu L, Wagner HD. Rubbery and glassy epoxy resins reinforced with carbon nanotubes. Compos Sci Technol, 65, 1861 (2005). http://dx.doi.org/10.1016/j.compscitech.2005.04.002. crossref(new window)

19.
Luan J, Zhang A, Zheng Y, Sun L. Effect of pyrene-modified multiwalled carbon nanotubes on the properties of epoxy composites. Composites A, 43, 1032 (2012). http://dx.doi.org/10.1016/j.compositesa.2012.02.005. crossref(new window)

20.
Park OK, Kim NH, Yoo GH, Rhee KY, Lee JH. Effects of the surface treatment on the properties of polyaniline coated carbon nanotubes/ epoxy composites. Composites B, 41, 2 (2010). http://dx.doi.org/10.1016/j.compositesb.2009.10.002. crossref(new window)

21.
Barghamadi M, Behmadi H. Influence of the epoxy functionalization of multiwall carbon nanotubes on the nonisothermal cure kinetics and thermal properties of epoxy/multiwall carbon nanotube nanocomposites. Polym Compos, 33, 1085 (2012). http://dx.doi.org/10.1002/pc.22232. crossref(new window)

22.
Ma PC, Mo SY, Tang BZ, Kim JK. Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites. Carbon, 48, 1824 (2010). http://dx.doi.org/10.1016/j.carbon.2010.01.028. crossref(new window)

23.
Xu L, Fang Z, Song Pa, Peng M. Functionalization of carbon nanotubes by corona-discharge induced graft polymerization for the reinforcement of epoxy nanocomposites. Plasma Processes Polym, 7, 785 (2010). http://dx.doi.org/10.1002/ppap.201000019. crossref(new window)

24.
Yang SY, Ma CCM, Teng CC, Huang YW, Liao SH, Huang YL, Tien HW, Lee TM, Chiou KC. Effect of functionalized carbon nanotubes on the thermal conductivity of epoxy composites. Carbon, 48, 592 (2010). http://dx.doi.org/10.1016/j.carbon.2009.08.047. crossref(new window)

25.
Wang J, Fang Z, Gu A, Xu L, Liu F. Effect of amino-functionalization of multi-walled carbon nanotubes on the dispersion with epoxy resin matrix. J Appl Polym Sci, 100, 97 (2006). http://dx.doi.org/10.1002/app.22647. crossref(new window)

26.
Lee JH, Rhee KY, Park SJ. Silane modification of carbon nanotubes and its effects on the material properties of carbon/CNT/epoxy three-phase composites. Composites A, 42, 478 (2011). http://dx.doi.org/10.1016/j.compositesa.2011.01.004. crossref(new window)

27.
Spitalsky Z, Matejka L, Slouf M, Konyushenko EN, Kovarova J, Zemek J, Kotek J. Modification of carbon nanotubes and its effect on properties of carbon nanotube/epoxy nanocomposites. Polym Compos, 30, 1378 (2009). http://dx.doi.org/10.1002/pc.20701. crossref(new window)

28.
Hadjiev VG, Warren GL, Sun L, Davis DC, Lagoudas DC, Sue HJ. Raman microscopy of residual strains in carbon nanotube/epoxy composites. Carbon, 48, 1750 (2010). http://dx.doi.org/10.1016/j.carbon.2010.01.018. crossref(new window)

29.
Luo Y, Zhao Y, Cai J, Duan Y, Du S. Effect of amino-functionalization on the interfacial adhesion of multi-walled carbon nanotubes/ epoxy nanocomposites. Mater Design, 33, 405 (2012). http://dx.doi.org/10.1016/j.matdes.2011.04.033. crossref(new window)

30.
Kim HC, Kim SK, Kim JT, Rhee KY, Kathi J. The effect of different treatment methods of multiwalled carbon nanotubes on thermal and flexural properties of their epoxy nanocomposites. J Polym Sci B, 48, 1175 (2010). http://dx.doi.org/10.1002/polb.22007. crossref(new window)

31.
Peng K, Liu LQ, Li H, Meyer H, Zhang Z. Room temperature functionalization of carbon nanotubes using an ozone/water vapor mixture. Carbon, 49, 70 (2011). http://dx.doi.org/10.1016/j.carbon.2010.08.043. crossref(new window)

32.
Yaping Z, Aibo Z, Qinghua C, Jiaoxia Z, Rongchang N. Functionalized effect on carbon nanotube/epoxy nano-composites. Mater Sci Eng A, 435-436, 145 (2006). http://dx.doi.org/10.1016/j.msea.2006.07.106. crossref(new window)

33.
Armstrong G, Ruether M, Blighe F, Blau W. Functionalised multi-walled carbon nanotubes for epoxy nanocomposites with improved performance. Polym Int, 58, 1002 (2009). http://dx.doi.org/10.1002/pi.2621. crossref(new window)

34.
Yang K, Gu M. The effects of triethylenetetramine grafting of multi-walled carbon nanotubes on its dispersion, filler-matrix interfacial interaction and the thermal properties of epoxy nanocomposites. Polym Eng Sci, 49, 2158 (2009). http://dx.doi.org/10.1002/pen.21461. crossref(new window)

35.
Kuan CF, Chen WJ, Li YL, Chen CH, Kuan HC, Chiang CL. Flame retardance and thermal stability of carbon nanotube epoxy composite prepared from sol-gel method. J Phys Chem Solids, 71, 539 (2010). http://dx.doi.org/10.1016/j.jpcs.2009.12.031. crossref(new window)

36.
Abdalla M, Dean D, Adibempe D, Nyairo E, Robinson P, Thompson G. The effect of interfacial chemistry on molecular mobility and morphology of multiwalled carbon nanotubes epoxy nanocomposite. Polymer, 48, 5662 (2007). http://dx.doi.org/10.1016/j.polymer.2007.06.073. crossref(new window)

37.
Teng CC, Ma CCM, Chiou KC, Lee TM. Synergetic effect of thermal conductive properties of epoxy composites containing functionalized multi-walled carbon nanotubes and aluminum nitride. Composites B, 43, 265 (2012). http://dx.doi.org/10.1016/j.compositesb.2011.05.027. crossref(new window)

38.
Auad ML, Mosiewicki MA, Uzunpinar C, Williams RJJ. Functionalization of carbon nanotubes and carbon nanofibers used in epoxy/amine matrices that avoid partitioning of the monomers at the fiber interface. Polym Eng Sci, 50, 183 (2010). http://dx.doi.org/10.1002/pen.21509. crossref(new window)

39.
Schulz SC, Faiella G, Buschhorn ST, Prado LASA, Giordano M, Schulte K, Bauhofer W. Combined electrical and rheological properties of shear induced multiwall carbon nanotube agglomerates in epoxy suspensions. Eur Polym J, 47, 2069 (2011). http://dx.doi.org/10.1016/j.eurpolymj.2011.07.022. crossref(new window)

40.
Gkikas G, Barkoula NM, Paipetis AS. Effect of dispersion conditions on the thermo-mechanical and toughness properties of multi walled carbon nanotubes-reinforced epoxy. Composites B, 43, 2697 (2012). http://dx.doi.org/10.1016/j.compositesb.2012.01.070. crossref(new window)

41.
Martone A, Formicola C, Giordano M, Zarrelli M. Reinforcement efficiency of multi-walled carbon nanotube/epoxy nano composites. Compos Sci Technol, 70, 1154 (2010). http://dx.doi.org/10.1016/j.compscitech.2010.03.001. crossref(new window)

42.
Feng QP, Yang JP, Fu SY, Mai YW. Synthesis of carbon nanotube/ epoxy composite films with a high nanotube loading by a mixedcuring- agent assisted layer-by-layer method and their electrical conductivity. Carbon, 48, 2057 (2010). http://dx.doi.org/10.1016/j.carbon.2010.02.016. crossref(new window)

43.
Rahatekar SS, Zammarano M, Matko S, Koziol KK, Windle AH, Nyden M, Kashiwagi T, Gilman JW. Effect of carbon nanotubes and montmorillonite on the flammability of epoxy nanocomposites. Polym Degrad Stab, 95, 870 (2010). http://dx.doi.org/10.1016/j.polymdegradstab.2010.01.003. crossref(new window)

44.
Loos MR, Yang J, Feke DL, Manas-Zloczower I. Effect of blockcopolymer dispersants on properties of carbon nanotube/epoxy systems. Compos Sci Technol, 72, 482 (2012). http://dx.doi.org/10.1016/j.compscitech.2011.11.034. crossref(new window)

45.
Saw LN, Mariatti M, Azura AR, Azizan A, Kim JK. Transparent, electrically conductive, and flexible films made from multiwalled carbon nanotube/epoxy composites. Composites B, 43, 2973 (2012). http://dx.doi.org/10.1016/j.compositesb.2012.05.048. crossref(new window)

46.
Gojny FH, Wichmann MHG, Fiedler B, Schulte K. Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites: a comparative study. Compos Sci Technol, 65, 2300 (2005). http://dx.doi.org/10.1016/j.compscitech.2005.04.021. crossref(new window)

47.
Prolongo SG, Gude MR, Urena A. Improving the flexural and thermomechanical properties of amino-functionalized carbon nanotube/ epoxy composites by using a pre-curing treatment. Compos Sci Technol, 71, 765 (2011). http://dx.doi.org/10.1016/j.compscitech.2011.01.028. crossref(new window)

48.
Cividanes LS, Brunelli DD, Antunes EF, Corat EJ, Sakane KK, Thim GP. Cure study of epoxy resin reinforced with multiwalled carbon nanotubes by Raman and luminescence spectroscopy. J Appl Polym Sci, 127, 544 (2013). http://dx.doi.org/10.1002/app.37815. crossref(new window)

49.
Kim MT, Rhee KY, Park SJ, Hui D. Effects of silane-modified carbon nanotubes on flexural and fracture behaviors of carbon nanotube-modified epoxy/basalt composites. Composites B, 43, 2298 (2012). http://dx.doi.org/10.1016/j.compositesb.2011.12.007. crossref(new window)

50.
Zehua Q, Guojian W. A comparative study on the properties of the different amino-functionalized multiwall carbon nanotubes reinforced epoxy resin composites. J Appl Polym Sci, 124, 403 (2012). http://dx.doi.org/10.1002/app.35105. crossref(new window)

51.
Farahani RD, Dalir H, Le Borgne V, Gautier LA, El Khakani MA, Levesque M, Therriault D. Reinforcing epoxy nanocomposites with functionalized carbon nanotubes via biotin-streptavidin interactions. Compos Sci Technol, 72, 1387 (2012). http://dx.doi.org/10.1016/j.compscitech.2012.05.010. crossref(new window)

52.
Kwon Y, Yim BS, Kim JM, Kim J. Dispersion, hybrid interconnection and heat dissipation properties of functionalized carbon nanotubes in epoxy composites for electrically conductive adhesives (ECAs). Microelectron Reliab, 51, 812 (2011). http://dx.doi.org/10.1016/j.microrel.2010.11.005. crossref(new window)

53.
Xu J, Yao P, Jiang Z, Liu H, Li X, Liu L, Li M, Zheng Y. Preparation, morphology, and properties of conducting polyaniline-grafted multiwalled carbon nanotubes/epoxy composites. J Appl Polym Sci, 125, E334 (2012). http://dx.doi.org/10.1002/app.35677. crossref(new window)

54.
Guo P, Chen X, Gao X, Song H, Shen H. Fabrication and mechanical properties of well-dispersed multiwalled carbon nanotubes/ epoxy composites. Compos Sci Technol, 67, 3331 (2007). http://dx.doi.org/10.1016/j.compscitech.2007.03.026. crossref(new window)

55.
Kim KS, Park SJ. Influence of surface treatment of multi-walled carbon nanotubes on interfacial interaction of nanocomposites. Carbon Lett, 11, 102 (2010). http://dx.doi.org/10.5714/CL.2010.11.2.102. crossref(new window)

56.
Martin CA, Sandler JKW, Shaffer MSP, Schwarz MK, Bauhofer W, Schulte K, Windle AH. Formation of percolating networks in multi-wall carbon-nanotube-epoxy composites. Compos Sci Technol, 64, 2309 (2004). http://dx.doi.org/10.1016/j.compscitech.2004.01.025. crossref(new window)

57.
Liu L, Etika KC, Liao KS, Hess LA, Bergbreiter DE, Grunlan JC. Comparison of covalently and noncovalently functionalized carbon nanotubes in epoxy. Macromol Rapid Commun, 30, 627 (2009). http://dx.doi.org/10.1002/marc.200800778. crossref(new window)

58.
Bai JB, Allaoui A. Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites-experimental investigation. Composites A, 34, 689 (2003). http://dx.doi.org/10.1016/S1359-835X(03)00140-4. crossref(new window)