JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Electrical properties of polyethylene composite films filled with nickel powder and short carbon fiber hybrid filler
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 14, Issue 2,  2013, pp.105-109
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2013.14.2.105
 Title & Authors
Electrical properties of polyethylene composite films filled with nickel powder and short carbon fiber hybrid filler
Mironov, V.S.; Kim, Seong Yun; Park, Min;
  PDF(new window)
 Abstract
Effects of the amount of nickel powder (Ni) in Ni-carbon fiber (CF) hybrid filler systems on the conductivity(or resistivity) and thermal coefficient of resistance (TCR) of filled high density polyethylene were studied. Increases of the resistivity and TCR with increasing Ni concentration at a given hybrid filler content were observed. Using the fiber contact model, we showed that the main role of Ni in the hybrid filler system is to decrease the interfiber contact resistance when Ni concentration is less than the threshold point. The formation of structural defects leading to reduced reinforcing effect resulted in both a reduction of strength and an increase of the coefficient of thermal expansion in the composite film; these changes are responsible for the increases of both resistivity and TCR with increasing Ni concentration in the hybrid filler system.
 Keywords
conductive polymer composites;hybrid filler;fiber contact model;contact resistance;
 Language
English
 Cited by
1.
Superhydrophobic carbon-based materials: a review of synthesis, structure, and applications,;;

Carbon letters, 2014. vol.15. 2, pp.89-104 crossref(new window)
1.
Superhydrophobic carbon-based materials: a review of synthesis, structure, and applications, Carbon letters, 2014, 15, 2, 89  crossref(new windwow)
2.
Compatibility of Functionalized Graphene with Polyethylene and Its Copolymers, Journal of Nanomaterials, 2013, 2013, 1  crossref(new windwow)
 References
1.
Arjmand M, Mahmoodi M, Gelves GA, Park S, Sundararaj U. Electrical and electromagnetic interference shielding properties of flow-induced oriented carbon nanotubes in polycarbonate. Carbon, 49, 3430 (2011). http://dx.doi.org/10.1016/j.carbon.2011.04.039. crossref(new window)

2.
Gelves GA, Al-Saleh MH, Sundararaj U. Highly electrically conductive and high performance EMI shielding nanowire/polymer nanocomposites by miscible mixing and precipitation. J Mater Chem, 21, 829 (2011). http://dx.doi.org/10.1039/C0JM02546A. crossref(new window)

3.
Kim SH, Jang SH, Byun SW, Lee JY, Joo JS, Jeong SH, Park MJ. Electrical properties and EMI shielding characteristics of polypyrrole-nylon 6 composite fabrics. J Appl Polym Sci, 87, 1969 (2003). http://dx.doi.org/10.1002/app.11566. crossref(new window)

4.
Yang Q, Wei S, Cheng G. Preparation of conductive polyaniline/ epoxy composite. Polym Compos, 27, 201 (2006). http://dx.doi. org/10.1002/pc.20176. crossref(new window)

5.
Immonen K, Nattinen K, Sarlin J, Hartikainen J. Conductive plastics with hybrid materials. J Appl Polym Sci, 114, 1494 (2009). http://dx.doi.org/10.1002/app.30767. crossref(new window)

6.
Zavickis J, Knite M, Podins G, Linarts A, Orlovs R. Polyisoprenenanostructured carbon composite-a soft alternative for pressure sensor application. Sensors Actuators A, 171, 38 (2011). http:// dx.doi.org/http://dx.doi.org/10.1016/j.sna.2011.05.035. crossref(new window)

7.
Ciselli P, Lu L, Busfield JJC, Peijs T. Piezoresistive polymer composites based on EPDM and MWNTs for strain sensing applications. e-Polymers, 14 (2010).

8.
Chen L, Chen GH, Lu L. Piezoresistive behavior study on fingersensing silicone rubber/graphite nanosheet nanocomposites. Adv Funct Mater, 17, 898 (2007). http://dx.doi.org/10.1002/adfm.200600519. crossref(new window)

9.
Isaji S, Bin Y, Matsuo M. Electrical and self-heating properties of UHMWPE-EMMA-NiCF composite films. J Polym Sci B, 47, 1253 (2009). http://dx.doi.org/10.1002/polb.21722. crossref(new window)

10.
Wang J, Guo W, Cheng S, Zhang Z. Structure and applications of CB/crystal fluoride resin alloy in self-regulated heating cables. J Appl Polym Sci, 88, 2664 (2003). http://dx.doi.org/10.1002/app.12078. crossref(new window)

11.
Kim TA, Kim HS, Lee SS, Park M. Single-walled carbon nanotube/ silicone rubber composites for compliant electrodes. Carbon, 50, 444 (2012). http://dx.doi.org/10.1016/j.carbon.2011.08.070. crossref(new window)

12.
Park J, Lee A, Yim Y, Han E. Electrical and thermal properties of PEDOT:PSS films doped with carbon nanotubes. Synth Met, 161, 523 (2011). http://dx.doi.org/10.1016/j.synthmet.2011.01.006. crossref(new window)

13.
Rathy I, Kuki A, Borda J, Deak G, Zsuga M, Marossy K, Keki S. Preparation and characterization of poly(vinyl chloride)-continuous carbon fiber composites. J Appl Polym Sci, 124, 190 (2012). http://dx.doi.org/10.1002/app.33617. crossref(new window)

14.
Selzer R, Friedrich K. Mechanical properties and failure behaviour of carbon fibre-reinforced polymer composites under the influence of moisture. Composites A, 28, 595 (1997). http://dx.doi. org/10.1016/S1359-835X(96)00154-6. crossref(new window)

15.
Balta Calleja FJ, Bayer RK, Ezquerra TA. Electrical conductivity of polyethylene-carbon-fibre composites mixed with carbon black. J Mater Sci, 23, 1411 (1988). http://dx.doi.org/10.1007/BF01154609. crossref(new window)

16.
Shen L, Wang FQ, Yang H, Meng QR. The combined effects of carbon black and carbon fiber on the electrical properties of composites based on polyethylene or polyethylene/polypropylene blend. Polym Test, 30, 442 (2011). http://dx.doi.org/10.1016/j.polymertesting.2011.03.007. crossref(new window)

17.
Gokturk HS, Fiske TJ, Kalyon DM. Effects of particle shape and size distributions on the electrical and magnetic properties of nickel/ polyethylene composites. J Appl Polym Sci, 50, 1891 (1993). http://dx.doi.org/10.1002/app.1993.070501105. crossref(new window)

18.
Gokturk HS, Fiske TJ, Kalyon DM. Electric and magnetic properties of a thermoplastic elastomer incorporated with ferromagnetic powders. IEEE Trans Magn, 29, 4170 (1993). http://dx.doi. org/10.1109/20.280866. crossref(new window)

19.
Qin FX, Peng HX, Pankratov N, Phan MH, Panina LV, Ipatov M, Zhukova V, Zhukov A, Gonzalez J. Exceptional electromagnetic interference shielding properties of ferromagnetic microwires enabled polymer composites. J Appl Phys, 108, 044510 (2010). http://dx.doi.org/10.1063/1.3471816. crossref(new window)

20.
Mironov VS, Park M, Kim J, Lim S, Choe C. Effect of sizing agent on the properties of carbon fiber/polyethylene composite film. J Mater Sci Lett, 20, 1211 (2001). http://dx.doi. org/10.1023/A:1010918721998. crossref(new window)

21.
Weber M, Kamal MR. Estimation of the volume resistivity of electrically conductive composites. Polym Compos, 18, 711 (1997). http://dx.doi.org/10.1002/pc.10324. crossref(new window)

22.
Meyer J. Stability of polymer composites as positive-temperaturecoefficient resistors. Polym Eng Sci, 14, 706 (1974). http://dx.doi. org/10.1002/pen.760141009. crossref(new window)