Advanced SearchSearch Tips
Polymer matrices for carbon fiber-reinforced polymer composites
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 14, Issue 2,  2013, pp.76-88
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2013.14.2.076
 Title & Authors
Polymer matrices for carbon fiber-reinforced polymer composites
Jin, Fan-Long; Lee, Seul-Yi; Park, Soo-Jin;
  PDF(new window)
Carbon fibers (CFs) have high service temperature, strength, and stiffness, and low weight. They are widely used as reinforcing materials in advanced polymer composites. The role of the polymer matrix in the composites is to provide bulk to the composite laminate and transfer load between the fibers. The interface between the CF and the resin matrix plays a critical role in controlling the overall properties of the composites. This paper aims to review the synthesis, properties, and applications of polymer matrices, such as thermosetting and thermoplastic resins.
carbon fibers;polymer matrix;thermosetting resins;thermoplastic resins;composites;
 Cited by
Superhydrophobic carbon-based materials: a review of synthesis, structure, and applications,;;

Carbon letters, 2014. vol.15. 2, pp.89-104 crossref(new window)
Preparation and characterization of carbon fiber-reinforced thermosetting composites: a review,;;

Carbon letters, 2015. vol.16. 2, pp.67-77 crossref(new window)
Effect of Urethane Functionality and Number of Epoxide Groups on Cure and Mechanical Behaviors of Epoxy Resins,;;;;

Macromolecular research, 2015. vol.23. 2, pp.134-138 crossref(new window)
Synthesis and application of epoxy resins: A review,;;;

Journal of Industrial and Engineering Chemistry, 2015. vol.29. pp.1-11 crossref(new window)
Superhydrophobic carbon-based materials: a review of synthesis, structure, and applications, Carbon letters, 2014, 15, 2, 89  crossref(new windwow)
Local repair procedure for carbon-fiber-reinforced plastics by refilling with a thermoset matrix, Journal of Applied Polymer Science, 2015, 133, 6, n/a  crossref(new windwow)
Preparation and characterization of carbon fiber-reinforced thermosetting composites: a review, Carbon letters, 2015, 16, 2, 67  crossref(new windwow)
Effect of urethane functionality and number of epoxide groups on cure and mechanical behaviors of epoxy resins, Macromolecular Research, 2015, 23, 2, 134  crossref(new windwow)
Microstructural characterization of short glass fibre reinforced polyethersulfone composites, Journal of Applied Polymer Science, 2016, 133, 32  crossref(new windwow)
Polyphenylene sulphide/carbon fiber composites: study on their thermal, mechanical and microscopic properties, Iranian Polymer Journal, 2016, 25, 6, 475  crossref(new windwow)
Effect of electrophoretic deposition of carbon nanotubes on the tensile behaviors of carbon fiber tow, Journal of Composite Materials, 2016, 50, 29, 4057  crossref(new windwow)
Barton JM, Hamerton I, Jones JR, Stedman JC. Mechanical properties of tough, high temperature carbon fibre composites from novel functionalized aryl cyanate ester polymers. Polymer, 37, 4519 (1996). crossref(new window)

Marieta C, Schulz E, Mondragon I. Characterization of interfacial behaviour in carbon-fibre/cyanate composites.Compos Sci Technol, 62, 299 (2002). crossref(new window)

Ren P, Liang G, Zhang Z. Influence of epoxy sizing of carbon-fiber on the properties of carbon fiber/cyanate ester composites.Polym Compos, 27, 591 (2006). crossref(new window)

Chung K, Seferis JC. Evaluation of thermal degradation on carbon fiber/cyanate ester composites. Polym Degrad Stab, 71, 425 (2001). crossref(new window)

Thunga M, Lio WY, Akinc M, Kessler R. Adhesive repair of bismaleimide/ carbon fiber composites with bisphenol E cyanate ester. Compos Sci Technol, 71, 239 (2011). crossref(new window)

Jin FL, Ma CJ, Park SJ. Thermal and mechanical interfacial properties of epoxy composites based on functionalized carbon nanotubes. Mater Sci Eng A, 528, 8517 (2011). http://dx.doi. org/10.1016/j.msea.2011.08.054. crossref(new window)

Zhu L, Jin FL, Park SJ. Thermal stability and fracture toughness of epoxy resins modified with epoxidized castor oil and $Al_2O_3 $ nanoparticles. Bull Korean Chem Soc, 33, 2513 (2012). http:// crossref(new window)

Park SJ, Kim MH, Lee JR, Choi S. Effect of fiber-polymer interactions on fracture toughness behavior of carbon fiber-reinforced epoxy matrix composites. J Colloid Interf Sci, 228, 287 (2000). crossref(new window)

Yoo MJ, Kim SH, Park SD, Lee WS, Sun JW, Choi JH, Nahm S. Investigation of curing kinetics of various cycloaliphatic epoxy resins using dynamic thermal analysis. Eur Polym J, 46, 1158 (2010). crossref(new window)

Park SJ, Kim TJ, Lee JR. Cure behavior of diglycidylether of bisphenol A/trimethylolpropane triglycidylether epoxy blends initiated by thermal latent catalyst. J Polym Sci B, 38, 2114 (2000). http://<2114::AIDPOLB50>3.0.CO;2-8. crossref(new window)

Kwak GH, Park SJ, Lee JR. Thermal stability and mechanical behavior of cycloaliphatic-DGEBA epoxy blend system initiated by cationic latent catalyst. J Appl Polym Sci, 78, 290 (2000).<290::AIDAPP80>3.0.CO;2-9. crossref(new window)

Park SJ, Jin FL, Lee JR. Thermal and mechanical properties of tetrafunctional epoxy resin toughened with epoxidized soybean oil. Mater Sci Eng A, 374, 109 (2004). crossref(new window)

Lee MC, Ho TH, Wang CS. Synthesis of tetrafunctional epoxy resins and their modification with polydimethylsiloxane for electronic application. J Appl Polym Sci, 62, 217 (1996). http://<217::AIDAPP25>3.0.CO;2-0. crossref(new window)

Chen W, Yu Y, Li P, Wang C, Zhou T, Yang X. Effect of new epoxy matrix for T800 carbon fiber/epoxy filament wound composites. Compos Sci Technol, 67, 2261 (2007). crossref(new window)

Miloshev S, Novakov P, Dimitrov V, Gitsov I. Synthesis of novolac resins: 2. Influence of the reaction medium on the properties of the novolac oligomers. Polymer, 32, 3067 (1991). http://dx.doi. org/10.1016/0032-3861(91)90211-Z. crossref(new window)

Park SJ, Seo MK, Lee JR. Isothermal cure kinetics of epoxy/ phenol-novolac resin blend system initiated by cationic latent thermal catalyst. J Polym Sci A, 38, 2945 (2000). http://<2945::AIDPOLA120>3.0.CO;2-6. crossref(new window)

Guo B, Jia D, Fu W, Qiu Q. Hygrothermal stability of dicyanatenovolac epoxy resin blends. Polym Degrad Stab, 79, 521 (2003). crossref(new window)

Xu HJ, Jin FL, Park SJ. Synthesis of a novel phosphorus-containing flame retardant for epoxy resins. Bull Korean Chem Soc, 30, 2643 (2009). crossref(new window)

Park SJ, Jin FL. Thermal stabilities and dynamic mechanical properties of sulfone-containing epoxy resin cured with anhydride. Polym Degrad Stab, 86, 515 (2004). crossref(new window)

Park SJ, Jin FL, Lee JR. Synthesis and thermal properties of epoxidized vegetable oil. Macromol Rapid Commun, 25, 724 (2004). crossref(new window)

Park SJ, Jin FL, Lee JR, Shin JS. Cationic polymerization and physicochemical properties of a biobased epoxy resin initiated by thermally latent catalysts. Eur Polym J, 41, 231 (2005). http:// crossref(new window)

Park SJ, Jin FL, Shin JS. Physicochemical and mechanical interfacial properties of trifluorometryl groups containing epoxy resin cured with amine. Mater Sci Eng A, 390, 240 (2005). http://dx.doi. org/10.1016/j.msea.2004.08.022. crossref(new window)

Park SJ, Jin FL. Synthesis and characterization of UV-curable acrylic resins containing fluorine groups. Polym Int, 54, 705 (2005). crossref(new window)

Park SJ, Jin FL, Nicolais L. Epoxy resins: fluorine systems. In: Nicolais L, Borzacchiello A, eds. Wiley encyclopedia of composites, John Wiley & Sons (2011). crossref(new window)

Choi MH, Jeon BH, Chung IJ. The effect of coupling agent on electrical and mechanical properties of carbon fiber/phenolic resin composites. Polymer, 41, 3243 (2000). crossref(new window)

Park SJ, Jang YS. Interfacial characteristics and fracture toughness of electrolytically Ni-plated carbon fiber-reinforced phenolic resin matrix composites. J Colloid Interf Sci, 237, 91 (2001). http:// crossref(new window)

An H, Feng B, Su S. $CO_2$ capture capacities of activated carbon fibre-phenolic resin composites. Carbon, 47, 2396 (2009). http:// crossref(new window)

Fei J, Li HJ, Fu YW, Qi LH, Zhang YL. Effect of phenolic resin content on performance of carbon fiber reinforced paper-based friction material. Wear, 269, 534 (2010). crossref(new window)

Hsiao KT, Gangireddy S. Investigation on the spring-in phenomenon of carbon nanofiber-glass fiber/polyester composites manufactured with vacuum assisted resin transfer molding. Composites A, 39, 834 (2008). crossref(new window)

Cecen V, Sarikanat M, Seki Y, Govsa T, Yildiz H, Tavman IH. Polyester composites reinforced with noncrimp stitched carbon fabrics: Mechanical characterization of composites and investigation on the interaction between polyester and carbon fiber. J Appl Polym Sci, 102, 4554 (2006). crossref(new window)

Monti M, Natali M, Petrucci R, Kenny JM, Torre L. Carbon nanofibers for strain and impact damage sensing in glass fiber reinforced composites based on an unsaturated polyester resin. Polym Compos, 32, 766 (2011). crossref(new window)

Vilcakova J, Saha P, Quadrat O. Electrical conductivity of carbon fibres/polyester resin composites in the percolation threshold region. Eur Polym J, 38, 2343 (2002). crossref(new window)

Zhang XR, Pei XQ, Wang QH. Friction and wear studies of polyimide composites filled with short carbon fibers and graphite and micro $SiO_2$. Mater Design, 30, 4414 (2009). http://dx.doi. org/10.1016/j.matdes.2009.04.002. crossref(new window)

Samyn P, Schoukens G. Thermochemical sliding interactions of short carbon fiber polyimide composites at high pv-conditions. Mater Chem Phys, 115, 185 (2009). crossref(new window)

Mascia L, Zhang Z, Shaw SJ. Carbon fibre composites based on polyimide/silica ceramers: aspects of structure-properties relationship. Composites A, 27, 1211 (1996). crossref(new window)

Li J, Cheng XH. Friction and wear properties of surface-treated carbon fiber-reinforced thermoplastic polyimide composites under oil-lubricated condition. Mater Chem Phys, 108, 67 (2008). crossref(new window)

Broyles NS, Verghese KNE, Davis SV, Li H, Davis RM, Lesko JJ, Riffle JS. Fatigue performance of carbon fibre/vinyl ester composites: the effect of two dissimilar polymeric sizing agents. Polymer, 39, 3417 (1998). crossref(new window)

Vautard F, Ozcan S, Meyer H. Properties of thermo-chemically surface treated carbon fibers and of their epoxy and vinyl ester composites. Composites A, 43, 1120 (2012). http://dx.doi. org/10.1016/j.compositesa.2012.02.018. crossref(new window)

Jin FL, Rhee KY, Park SJ. Surface treatment of montmorillonite on the thermal stabilities of bisphenol-A diglycidyl dimethacrylate nanocomposites. Mater Sci Eng A, 435-436, 429 (2006). http:// crossref(new window)

Yamada K, Yamane H, Kumada K, Tanabe S, Kajiyama T. Plasmagraft polymerization of a monomer with double bonds onto the surface of carbon fiber and its adhesion to a vinyl ester resin. J Appl Polym Sci, 90, 2415 (2003). crossref(new window)

Huang CY, Wu CC. The EMI shielding effectiveness of PC/ABS/ nickel-coated-carbon-fibre composites. Eur Polym J, 36, 2729 (2000). crossref(new window)

Li J, Cai CL. The carbon fiber surface treatment and addition of PA6 on tensile properties of ABS composites. Curr Appl Phys, 11, 50 (2011). crossref(new window)

Wu SH, Wang FY, Ma CCM, Chang WC, Kuo CT, Kuan HC, Chen WJ. Mechanical, thermal and morphological properties of glass fiber and carbon fiber reinforced polyamide-6 and polyamide-6/ clay nanocomposites. Mater Lett, 49, 327 (2001). http://dx.doi. org/10.1016/S0167-577X(00)00394-3. crossref(new window)

Botelho EC, Figiel L, Rezende MC, Lauke B. Mechanical behavior of carbon fiber reinforced polyamide composites. Compos Sci Technol, 63, 1843 (2003). crossref(new window)

Feldman AY, Gonzalez MF, Wachtel E, Moret MP, Marom G. Transcrystallinity in aramid and carbon fiber reinforced nylon 66: determining the lamellar orientation by synchrotron X-ray micro diffraction. Polymer, 45, 7239 (2004). crossref(new window)

Senthilvelan S, Gnanamoorthy R. Damping characteristics of unreinforced, glass and carbon fiber reinforced nylon 6/6 spur gears. Polym Test, 25, 56 (2006). crossref(new window)

Montes-Moran MA, Martinez-Alonso A, Tascon JMD, Paiva MC, Bernardo CA. Effects of plasma oxidation on the surface and interfacial properties of carbon fibres/polycarbonate composites. Carbon, 39, 1057 (2001). crossref(new window)

Carneiro OS, Covas JA, Bernardo CA, Caldeira G, Hattum FWJV, Ting JM, Alig RL, Lake ML. Production and assessment of polycarbonate composites reinforced with vapour-grown carbon fibres. Compos Sci Technol, 58, 401 (1998). crossref(new window)

Park JM. Interfacial properties of two-carbon fiber reinforced polycarbonate composites using two-synthesized graft copolymers as coupling agents. J Colloid Interf Sci, 225, 384 (2000). http:// crossref(new window)

Choi YK, Sugimoto K, Song SM, Endo M. Production and characterization of polycarbonate composite sheets reinforced with vapor grown carbon fiber. Composites A, 37, 1944 (2006). crossref(new window)

Kurtz SM. Chapter 2-Synthesis and processing of PEEK for surgical implants. In: Kurtz SM, ed. PEEK Biomaterials Handbook, William Andrew Publishing, Oxford, 9 (2012). http://dx.doi. org/10.1016/B978-1-4377-4463-7.10002-8. crossref(new window)

Ma CCM, Tai NH, Wu SH, Lin SH, Wu JF, Lin JM. Creep behavior of carbon-fiber-reinforced polyetheretherketone (PEEK) [${\pm}$45]4s laminated composites (I). Composites B, 28, 407 (1997). http:// crossref(new window)

Xie GY, Sui GX, Yang R. Effects of potassium titanate whiskers and carbon fibers on the wear behavior of polyetheretherketone composite under water lubricated condition. Compos Sci Technol, 71, 828 (2011). crossref(new window)

Gebhard A, Bayerl T, Schlarb AK, Friedrich K. Galvanic corrosion of polyacrylnitrile (PAN) and pitch based short carbon fibres in polyetheretherketone (PEEK) composites. Corros Sci, 51, 2524 (2009). crossref(new window)

Gebhard A, Bayerl T, Schlarb AK, Friedrich K. Increased wear of aqueous lubricated short carbon fiber reinforced polyetheretherketone (PEEK/SCF) composites due to galvanic fiber corrosion. Wear, 268, 871 (2010). crossref(new window)

Wu GM, Schultz JM. Processing and properties of solution impregnated carbon fiber reinforced polyethersulfone composites. Polym Compos, 21, 223 (2000). crossref(new window)

Hou M, Ye L, Lee HJ, Mai YW. Manufacture of a carbon-fabricreinforced polyetherimide (CF/PEI) composite material. Compos Sci Technol, 58, 181 (1998). crossref(new window)

Kim KY, Ye L. Interlaminar fracture toughness of CF/PEI composites at elevated temperatures: roles of matrix toughness and fibre/ matrix adhesion. Composites A, 35, 477 (2004). http://dx.doi. org/10.1016/j.compositesa.2003.10.005. crossref(new window)

Xian G, Zhang Z. Sliding wear of polyetherimide matrix composites: I. Influence of short carbon fibre reinforcement. Wear, 258, 776 (2005). crossref(new window)

Fernandez B, Arbelaiz A, Diaz E, Mondragon I. Influence of polyethersulfone modification of a tetrafunctional epoxy matrix on the fracture behavior of composite laminates based on woven carbon fibers. Polym Compos, 25, 480 (2004). crossref(new window)

Peijs AAJM. de Kok JMM. Hybrid composites based on polyethylene and carbon fibers. Part 6: Tensile and fatigue behavior. Composites, 24, 19 (1993). crossref(new window)

Hertel D, Valette R, Munstedt H. Three-dimensional entrance flow of a low-density polyethylene (LDPE) and a linear low-density polyethylene (LLDPE) into a slit die. J Non-Newton Fluid Mech, 153, 82 (2008). crossref(new window)

Spencer MW, Cui L, Yoo Y, Paul DR. Morphology and properties of nanocomposites based on HDPE/HDPE-g-MA blends. Polymer, 51, 1056 (2010). crossref(new window)

Zhang C, Yi XS, Yui H, Asai S, Sumita M. Selective location and double percolation of short carbon fiber filled polymer blends: high-density polyethylene/isotactic polypropylene. Mater Lett, 36, 186 (1998). crossref(new window)

Jiang Z, Gyurova LA, Schlarb AK, Friedrich K, Zhang Z. Study on friction and wear behavior of polyphenylene sulfide composites reinforced by short carbon fibers and sub-micro $TiO_2$ particles. Compos Sci Technol, 68, 734 (2008). crossref(new window)

Xu H, Feng Z, Chen J, Zhou H. Tribological behavior of the carbon fiber reinforced polyphenylene sulfide (PPS) composite coating under dry sliding and water lubrication. Mater Sci Eng A, 416, 66 (2006). crossref(new window)

Karsli NG, Aytac A, Akbulut M, Deniz V, Guven O. Effects of irradiated polypropylene compatibilizer on the properties of short carbon fiber reinforced polypropylene composites. Radiat Phys Chem, 84, 74 (2013). crossref(new window)

Dutra RCL, Soares BG, Campos EA, Silva JLG. Hybrid composites based on polypropylene and carbon fiber and epoxy matrix. Polymer, 41, 3841 (2000). crossref(new window)

Karsli NG, Aytac A. Effects of maleated polypropylene on the morphology, thermal and mechanical properties of short carbon fiber reinforced polypropylene composites. Mater Design, 32, 4069 (2011). crossref(new window)

Taketa I, Ustarroz J, Gorbatikh L, Lomov SV, Verpoest I. Interply hybrid composites with carbon fiber reinforced polypropylene and self-reinforced polypropylene. Composites A, 41, 927 (2010). crossref(new window)

Rezaei F, Yunus R, Ibrahim NA. Effect of fiber length on thermomechanical properties of short carbon fiber reinforced polypropylene composites. Mater Design, 30, 260 (2009). http://dx.doi. org/10.1016/j.matdes.2008.05.005. crossref(new window)

Fu SY, Lauke B, Mader E, Hu X, Yue CY. Fracture resistance of short-glass-fiber-reinforced and short-carbon-fiber-reinforced polypropylene under Charpy impact load and its dependence on processing. J Mater Process Technol, 89-90, 501 (1999). http:// crossref(new window)

Li J. The research on the interfacial compatibility of polypropylene composite filled with surface treated carbon fiber. Appl Surf Sci, 255, 8682 (2009). crossref(new window)