Advanced SearchSearch Tips
Preparation and characterization of isotropic pitch-based carbon fiber
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 14, Issue 2,  2013, pp.94-98
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2013.14.2.094
 Title & Authors
Preparation and characterization of isotropic pitch-based carbon fiber
Zhu, Jiadeng; Park, Sang Wook; Joh, Han-Ik; Kim, Hwan Chul; Lee, Sungho;
  PDF(new window)
Isotropic pitch fibers were stabilized and carbonized for preparing carbon fibers. To optimize the duration and temperature during the stabilization process, a thermogravimetric analysis was conducted. Stabilized fibers were carbonized at 1000, 1500, and in a furnace under a nitrogen atmosphere. An elemental analysis confirmed that the carbon content increased with an increase in the carbonization temperature. Although short graphitic-like layers were observed with carbon fibers heat-treated at 1500 and , Raman spectroscopy and X-ray diffraction revealed no significant effect of the carbonization temperature on the crystalline structure of the carbon fibers, indicating the limit of developing an ordered structure of isotropic pitch-based carbon fibers. The electrical conductivity of the carbonized fiber reached S/m with the carbonization temperature increasing to using a four-point method.
isotropic pitch;stabilization;carbonization;Raman;X-ray diffraction;
 Cited by
Superhydrophobic carbon-based materials: a review of synthesis, structure, and applications,Meng, Long-Yue;Park, Soo-Jin;

Carbon letters, 2014. vol.15. 2, pp.89-104 crossref(new window)
콜타르 기반 등방성 피치 섬유의 산화안정화 공정에 대한 오존 처리 영향,양재연;고재경;윤광의;서민강;

한국섬유공학회지, 2014. vol.51. 5, pp.265-272 crossref(new window)
Porous one-dimensional carbon/iron oxide composite for rechargeable lithium-ion batteries with high and stable capacity, Journal of Alloys and Compounds, 2016, 672, 79  crossref(new windwow)
Boron-doped carbon prepared from PFO as a lithium-ion battery anode, Solid State Sciences, 2014, 34, 38  crossref(new windwow)
Superhydrophobic carbon-based materials: a review of synthesis, structure, and applications, Carbon letters, 2014, 15, 2, 89  crossref(new windwow)
Synthesis and its characterization of pitch from pyrolyzed fuel oil (PFO), Journal of Industrial and Engineering Chemistry, 2016, 36, 293  crossref(new windwow)
Influence of Ozone Treatment on Oxidative Stabilization Behavior of Coal-tar-based Isotropic Pitch Fibers, Textile Science and Engineering, 2014, 51, 5, 265  crossref(new windwow)
Northolt MG, Veldhuizen LH, Jansen H. Tensile deformation of carbon fibers and the relationship with the modulus for shear between the basal planes. Carbon, 29, 1267 (1991). http://dx.doi. org/10.1016/0008-6223(91)90046-L. crossref(new window)

Kumar S, Anderson DP, Crasto AS. Carbon fibre compressive strength and its dependence on structure and morphology. J Mater Sci, 28, 423 (1993). crossref(new window)

Edie DD, Fain CC, Robinson KE, Harper AM, Rogers DK. Ribbon-shape carbon fibers for thermal management. Carbon, 31, 941 (1993). crossref(new window)

Hong SH, Korai Y, Mochida I. Development of mesoscopic textures in transverse cross-section of mesophase pitch-based carbon fibers. Carbon, 37, 917 (1999). crossref(new window)

Hong SH, Korai Y, Mochida I. Mesoscopic texture at the skin area of mesophase pitch-based carbon fiber. Carbon, 38, 805 (2000). crossref(new window)

Edie DD. The effect of processing on the structure and properties of carbon fibers. Carbon, 36, 345 (1988). crossref(new window)

Mochida I, Kudo K, Fukuda N, Takeshita K. Carbonization of pitches--IV: Carbonization of polycyclic aromatic hydrocarbons under the presence of aluminum chloride catalyst. Carbon, 13, 135 (1975). crossref(new window)

Hutchenson KW, Roebers JR, Thies MC. Fractionation of petroleum pitch by supercritical fluid extraction. Carbon, 29, 215 (1991). crossref(new window)

Kim CJ, Ryu SK, Rhee BS. Properties of coal tar pitch-based mesophase separated by high-temperature centrifugation. Carbon, 31, 833 (1993). crossref(new window)

Wazir AH, Kakakhel L. Preparation and characterization of pitchbased carbon fibers. New Carbon Mater, 24, 83 (2009). http:// crossref(new window)

Mora E, C. Blanco C, Prada V, Santamaria R, Granda M, Menendez R. A study of pitch-based precursors for general purpose carbon fibres. Carbon, 40, 2719 (2002). crossref(new window)

Miuea K, Nakagawa H, Hashimoto K. Examination of the oxidative stabilization reaction of the pitch-based carbon fiber through continuous measurement of oxygen chemisorption and gas formation rate. Carbon, 33, 275 (1995). crossref(new window)

Morgan P. Carbon fibers and their composites, Taylor & Francis, Boca Raton, 296 (2005).

Dongbu Hannong Chem. Production of high-softening optically isotropic pitch. KR Patent, 1999-0012608 (1999).

Liu S, Blanco C, Rand B. Large diameter carbon fibres from mesophase pitch. Carbon, 40, 2109 (2002). crossref(new window)

Hayashi JI, Nakashima M, Kusakabe K, Morooka S, Mitsuda S. Rapid stabilization of pitch precursor by multi-step thermal oxidation. Carbon, 33, 1567 (1995). crossref(new window)

Stevens WC, Diefendorf RJ. Thermosetting of mesophase pitches: experimental. Carbon '86: Proceedings of the 4th International Conference on Carbon, Baden-Baden, Germany, 37 (1986).

Li DF, Wang HJ, Wang XK. Effect of microstructure on the modulus of PAN-based carbon fibers during high temperature treatment and hot stretching graphitization. J Mater Sci, 42, 4642 (2007). crossref(new window)

Tuinstra F, Koenig JL. Raman spectrum of graphite. J Chem Phys, 53, 1126 (1970). crossref(new window)

Melanitis N, Tetlow PL, Galiotis C. Characterization of PAN-based carbon fibres with laser Raman spectroscopy. J Mater Sci, 31, 851 (1996). crossref(new window)

Jin XD, Ni QQ, Fu YQ, Zhang L, Natsuki T. Electrospun nanocomposite polyacrylonitrile fibers containing carbon nanotubes and cobalt ferrite. Polym Compos, 33, 317 (2012). http://dx.doi. org/10.1002/pc.21251. crossref(new window)

McNally T, Potschke P, Halley P, Murphy M, Martin D, Bell SEJ, Brennan GP, Bein D, Lemoine P, Quinn JP. Polyethylene multiwalled carbon nanotube composites. Polymer, 46, 8222 (2005). crossref(new window)

Dong ZJ, Li XK, Yuan GM, Cui ZW, Cong Y, Westwood A. Synthesis in molten salts and formation reaction kinetics of tantalum carbide coatings on various carbon fibers. Surf Coat Technol, 212, 169 (2012). crossref(new window)

Watanabe F, Ishida S, Korai Y, Mochida I, Kato I, Sakai Y, Kamatsu M. Pitch-based carbon fiber of high compressive strength prepared from synthetic isotropic pitch containing mesophase spheres. Carbon, 37, 961 (1999). crossref(new window)

Diez N, Alvarez P, Santamaria R, Blanco C, Menendez R, Granda M. Optimisation of the melt-spinning of anthracene oil-based pitch for isotropic carbon fibre preparation. Fuel Process Technol, 93, 99 (2012). crossref(new window)

Guigon M, Oberlin A, Desarmot G. Microtexture and structure of some high tensile strength, PAN-based carbon fibres. Fibre Sci Technol, 20, 55 (1984). crossref(new window)

Guigon M, Oberlin A, Desarmot G. Microtexture and structure of some high-modulus, PAN-based carbon fibres. Fibre Sci Technol, 20, 177 (1984). crossref(new window)

Bright AA, Singer LS. The electronic and structural characteristics of carbon fibers from mesophase pitch. Carbon, 17, 59 (1979). crossref(new window)

Dumont M, Dourges MA, Bourrat X, Pailler R, Naslain R, Babot O, Birot M, Pillot JP. Carbonization behavior of modified synthetic mesophase pitches. Carbon, 43, 2277 (2005). http://dx.doi. org/10.1016/j.carbon.2005.04.007. crossref(new window)