JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Carbon nanotubes-properties and applications: a review
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 14, Issue 3,  2013, pp.131-144
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2013.14.3.131
 Title & Authors
Carbon nanotubes-properties and applications: a review
Ibrahim, Khalid Saeed;
  PDF(new window)
 Abstract
The carbon nanotube (CNT) represents one of the most unique inventions in the field of nanotechnology. CNTs have been studied closely over the last two decades by many researchers around the world due to their great potential in different fields. CNTs are rolled graphene with hybridization. The important aspects of CNTs are their light weight, small size with a high aspect ratio, good tensile strength, and good conducting characteristics, which make them useful as fillers in different materials such as polymers, metallic surfaces and ceramics. CNTs also have potential applications in the field of nanotechnology, nanomedicine, transistors, actuators, sensors, membranes, and capacitors. There are various techniques which can be used for the synthesis of CNTs. These include the arc-discharge method, chemical vaporize deposition (CVD), the laser ablation method, and the sol gel method. CNTs can be single-walled, double-walled and multi-walled. CNTs have unique mechanical, electrical and optical properties, all of which have been extensively studied. The present review is focused on the synthesis, functionalization, properties and applications of CNTs. The toxic effect of CNTs is also presented in a summarized form.
 Keywords
carbon nanotube;synthesis;functionalization;toxic effect of CNTs;
 Language
English
 Cited by
1.
Superhydrophobic carbon-based materials: a review of synthesis, structure, and applications,;;

Carbon letters, 2014. vol.15. 2, pp.89-104 crossref(new window)
2.
Electromagnetic interference shielding behaviors of carbon fibers-reinforced polypropylene matrix composites: II. Effects of filler length control,;;;;;;;

Journal of Industrial and Engineering Chemistry, 2014. vol.20. 5, pp.3901-3904 crossref(new window)
3.
Carbon nanotubes synthesis using diffusion and premixed flame methods: a review,;;;;;

Carbon letters, 2015. vol.16. 1, pp.1-10 crossref(new window)
1.
Preparation and characterization of single-walled carbon nanotube/nylon 6, 6 nanocomposites, Instrumentation Science & Technology, 2016, 44, 4, 435  crossref(new windwow)
2.
A review: synthesis and applications of graphene/chitosan nanocomposites, Carbon letters, 2016, 17, 1, 11  crossref(new windwow)
3.
Superhydrophobic carbon-based materials: a review of synthesis, structure, and applications, Carbon letters, 2014, 15, 2, 89  crossref(new windwow)
4.
Decoration of multi-walled carbon nanotubes with FexNi1-x alloys and their magnetic properties, Journal of Alloys and Compounds, 2017, 693, 1083  crossref(new windwow)
5.
Stabilization and dispersion of carbon nanomaterials in aqueous solutions: A review, Separation and Purification Technology, 2015, 156, 861  crossref(new windwow)
6.
Effect of incorporation of multiwalled carbon nanotubes on photodegradation efficiency of mesoporous anatase TiO2 spheres, Materials Chemistry and Physics, 2016  crossref(new windwow)
7.
Fabrication of a carbon nanotube-polyurethane composite electrode by in situ polyaddition for use in amperometric detection in capillary electrophoresis, Microchimica Acta, 2016, 183, 9, 2579  crossref(new windwow)
8.
Carbon nanotubes synthesis using diffusion and premixed flame methods: a review, Carbon letters, 2015, 16, 1, 1  crossref(new windwow)
9.
Synthesis, characterization, and toxicity of multi-walled carbon nanotubes functionalized with 4-hydroxyquinazoline, Carbon letters, 2016, 17, 1, 45  crossref(new windwow)
10.
Interaction mechanism between serine functional groups and single-walled carbon nanotubes, Journal of Physical Organic Chemistry, 2016, 29, 2, 69  crossref(new windwow)
11.
Fabrication and characterisation of low density polyethylene (LDPE)/multi walled carbon nanotubes (MWCNTs) nano-composites, Perspectives in Science, 2016, 8, 403  crossref(new windwow)
12.
Effects of multi-walled carbon nanotube structures on the electrical and mechanical properties of silicone rubber filled with multi-walled carbon nanotubes, J. Mater. Chem. C, 2015, 3, 21, 5573  crossref(new windwow)
13.
Comprehensive study of threonine adsorption on carbon nanotube: A dispersion complemented density functional theory-based treatment, International Journal of Quantum Chemistry, 2015, 115, 22, 1606  crossref(new windwow)
14.
Electromagnetic interference shielding behaviors of carbon fibers-reinforced polypropylene matrix composites: II. Effects of filler length control, Journal of Industrial and Engineering Chemistry, 2014, 20, 5, 3901  crossref(new windwow)
15.
Structure and property of multiple amino acids assembled on the surface of a CNT, Physica E: Low-dimensional Systems and Nanostructures, 2017, 85, 7  crossref(new windwow)
16.
Adsorption and Condensation of SO2in Double-Walled Carbon Nanotube Arrays Studied by Monte Carlo Simulations and Simple Analytical Models, The Journal of Physical Chemistry C, 2016, 120, 14, 7510  crossref(new windwow)
 References
1.
Wagner FE, Haslbeck S, Stievano L, Calogero S, Pankhurst QA, Martinek KP. Before striking gold in gold-ruby glass. Nature, 407, 691 (2000). http://dx.doi.org/10.1038/35037661. crossref(new window)

2.
Franks A. Nanotechnology. J Phys E, 20, 1442 (1987). http://dx.doi.org/10.1088/0022-3735/20/12/001. crossref(new window)

3.
Taniguchi N. On the basic concept of 'nano-technology'. Proceedings of the International Conference on Production Engineering, Tokyo, Japan, Part II (1974).

4.
Kroto HW, Heath JR, O'Brien SC, Curl RF, Smalley RE. $C_{60}$: buckminsterfullerene. Nature, 318, 162 (1985). http://dx.doi.org/10.1038/318162a0. crossref(new window)

5.
Iijima S. Helical microtubules of graphitic carbon. Nature, 354, 56 (1991). http://dx.doi.org/10.1038/354056a0. crossref(new window)

6.
Radushkevich LV, Lukyanovich VM. O strukture ugleroda, obrazujucegosja pri termiceskom razlozenii okisi ugleroda na zeleznom kontakte (About the structure of carbon formed by thermal decomposition of carbon monoxide on iron substrate). Zurn Fisic Chim, 26, 88 (1952).

7.
Lau AKT, Hui D. The revolutionary creation of new advanced materials--carbon nanotube composites. Composites B, 33, 263 (2002). http://dx.doi.org/10.1016/S1359-8368(02)00012-4. crossref(new window)

8.
Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature, 363, 603 (1993). http://dx.doi.org/10.1038/363603a0. crossref(new window)

9.
Geim AK, Novoselov KS. The rise of graphene. Nature Mater, 6, 183 (2007). http:dx.doi.org/10.1038/nmat1849. crossref(new window)

10.
Sheshmania S, Ashorib A, Fashapoyeha MA. Wood plastic composite using graphene nanoplatelets, Int J Biol Macromol, 58, 6 (2013). http://dx.doi.org/10.1016/j.ijbiomac.2013.03.047. crossref(new window)

11.
Saether E, Frankland SJV, Pipes RB. Transverse mechanical properties of single walled carbon nanotube crystals. Part I: determination of elastic moduli. Compos Sci Technol, 63, 1543 (2003). http://dx.doi.org/10.1016/S0266-3538(03)00056-3. crossref(new window)

12.
Pichler T. Molecular nanostructures: carbon ahead. Nature Mater, 6, 332 (2007). http://dx.doi.org/10.1038/nmat1898. crossref(new window)

13.
Ajayan PM. Bulk metal and ceramics nanocomposites. In: Ajayan PM, Schadler LS, Braun PV, eds. Nanocomposite Science and Technology, Wiley-VCH Verlag GmbH & Co., 1 (2004). http://dx.doi.org/10.1002/3527602127.ch1. crossref(new window)

14.
Dresselhaus MS, Lin YM, Rabin O, Jorio A, Souza AG, Pimenta MA, Saito R, Samsonidze G, Dresselhaus G. Nanowires and nanotubes. Mater Sci Engg: C, 23, 129 (2003). crossref(new window)

15.
Prasher RS, Hu XJ, Chalopin Y, Mingo N, Lofgreen K, Volz S, Cleri F, Keblinski P. Turning carbon nanotubes from exceptional heat conductors into insulators. Phys Rev Lett, 102, 105901 (2009). http://dx.doi.org/10.1103/PhysRevLett.102.105901. crossref(new window)

16.
Ahmad A, Kholoud MM, Abou E, Reda AA, Abdulrahman AW. Carbon nanotubes, science and technology part (I) structure, synthesis and characterization. Arabian J Chem, 5, 1 (2012). http://dx.doi.org/10.1016/j.arabjc.2010.08.022. crossref(new window)

17.
Ebbesen TW, Ajayan PM. Large-scale synthesis of carbon nanotubes. Nature, 358, 220 (1992). http://dx.doi.org/10.1038/358220a0. crossref(new window)

18.
Bethune DS, Klang CH, de Vries MS, Gorman G, Savoy R, Vazquez J, Beyers R. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature, 363, 605 (1993). http://dx.doi.org/10.1038/363605a0. crossref(new window)

19.
Journet C, Maser WK, Bernier P, Loiseau A, de la Chapelle ML, Lefrant S, Deniard P, Lee R, Fischer JE. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature, 388, 756 (1997). crossref(new window)

20.
Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tomanek D, Fischer JE, Smalley RE. Crystalline ropes of metallic carbon nanotubes. Science, 273, 483 (1996). http://dx.doi.org/10.1126/science.273.5274.483. crossref(new window)

21.
Mamalis AG, Vogtlander LOG, Markopoulos A. Nanotechnology and nanostructured materials: trends in carbon nanotubes. Precis Eng, 28, 16 (2004). http://dx.doi.org/10.1016/j.precisioneng.2002.11.002. crossref(new window)

22.
Li WZ, Xie SS, Qian LX, Chang BH, Zou BS, Zhou WY, Zhao RA, Wang G. Large-scale synthesis of aligned carbon nanotubes. Science, 274, 1701 (1996). http://dx.doi.org/10.1126/science.274.5293.1701. crossref(new window)

23.
Xie S, Li W, Pan Z, Chang B, Sun L. Carbon nanotube arrays. Mater Sci Eng A, 286, 11 (2000). http://dx.doi.org/10.1016/S0921-5093(00)00657-2. crossref(new window)

24.
Lee CJ, Lyu SC, Kim HW, Park CY, Yang CW. Large-scale production of aligned carbon nanotubes by the vapor phase growth method. Chem Phys Lett, 359, 109 (2002). http://dx.doi.org/10.1016/S0009-2614(02)00648-6. crossref(new window)

25.
Hahm MG, Hashim DP, Vajtai R, Ajayan PM. A review: controlled synthesis of vertically aligned carbon nanotubes. Carbon Lett, 12, 185 (2011). http://dx.doi.org/10.5714/CL.2011.12.4.185. crossref(new window)

26.
Rao CNR, Govindaraj A, Gundiah G, Vivekchand SRC. Nanotubes and nanowires. Chem Eng Sci, 59, 4665 (2004). http://dx.doi.org/10.1016/j.ces.2004.07.067. crossref(new window)

27.
Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T. Electrical conductivity of individual carbon nanotubes. Nature, 382, 54 (1996). http://dx.doi.org/10.1038/382054a0. crossref(new window)

28.
Treacy MMJ, Ebbesen TW, Gibson JM. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature, 381, 678 (1996). http://dx.doi.org/10.1038/381678a0. crossref(new window)

29.
Chang TE, Jensen LR, Kisliuk A, Pipes RB, Pyrz R, Sokolov AP. Microscopic mechanism of reinforcement in single-wall carbon nanotube/polypropylene nanocomposite. Polymer, 46, 439 (2005). http://dx.doi.org/10.1016/j.polymer.2004.11.030. crossref(new window)

30.
Jin FL, Park SJ. Recent advances in carbon-nanotube-based epoxy composites. Carbon Lett, 14, 1 (2013). http://dx.doi.org/10.5714/CL.2012.14.1.001. crossref(new window)

31.
Wepasnick KA, Smith BA, Bitter JL, Howard Fairbrother D. Chemical and structural characterization of carbon nanotube surfaces. Anal Bioanal Chem, 396, 1003 (2010). http://dx.doi.org/10.1007/s00216-009-3332-5. crossref(new window)

32.
Chandra B, Bhattacharjee J, Purewal M, Son YW, Wu Y, Huang M, Yan H, Heinz TF, Kim P, Neaton JB, Hone J. Molecular-scale quantum dots from carbon nanotube heterojunctions. Nano Lett, 9, 1544 (2009). http://dx.doi.org/10.1021/nl803639h. crossref(new window)

33.
Dai H, Wong EW, Lieber CM. Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes. Science, 272, 523 (1996). http://dx.doi.org/10.1126/science.272.5261.523. crossref(new window)

34.
Choo H, Jung Y, Jeong Y, Kim HC, Ku BC. Fabrication and applications of carbon nanotube fibers. Carbon Lett, 13, 191 (2012). http://dx.doi.org/10.5714/CL.2012.13.4.191. crossref(new window)

35.
Kim KS, Park SJ. Bridge effect of carbon nanotubes on the electrical properties of expanded graphite/poly(ethylene terephthalate) nanocomposites. Carbon Lett, 13, 51 (2012). http://dx.doi.org/10.5714/CL.2012.13.1.051. crossref(new window)

36.
Mintmire JW, Dunlap BI, White CT. Are fullerene tubules metallic? Phys Rev Lett, 68, 631 (1992). http://dx.doi.org/10.1103/PhysRevLett.68.631. crossref(new window)

37.
Saito R, Fujita M, Dresselhaus G, Dresselhaus MS. Electronic structure of chiral graphene tubules. Appl Phys Lett, 60, 2204 (1992). http://dx.doi.org/10.1063/1.107080. crossref(new window)

38.
Tans SJ, Verschueren ARM, Dekker C. Room-temperature transistor based on a single carbon nanotube. Nature, 393, 49 (1998). http://dx.doi.org/10.1038/29954. crossref(new window)

39.
Schonenberger C, Bachtold A, Strunk C, Salvetat JP, Forro L. Interference and Interaction in multi-wall carbon nanotubes. Appl Phys A, 69, 283 (1999). http://dx.doi.org/10.1007/s003390051003. crossref(new window)

40.
Hone J, Llaguno MC, Nemes NM, Johnson AT, Fischer JE, Walters DA, Casavant MJ, Schmidt J, Smalley RE. Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films. Appl Phys Lett, 77, 666 (2000). http://dx.doi.org/10.1063/1.127079. crossref(new window)

41.
Tans SJ, Devoret MH, Dai H, Thess A, Smalley RE, Geerligs LJ, Dekker C. Individual single-wall carbon nanotubes as quantum wires. Nature, 386, 474 (1997). http://dx.doi.org/10.1038/386474a0. crossref(new window)

42.
Delaney P, Di Ventra M, Pantelides ST. Quantized conductance of multiwalled carbon nanotubes. Appl Phys Lett, 75, 3787 (1999). http://dx.doi.org/10.1063/1.125456. crossref(new window)

43.
Bandaru PR, Daraio C, Jin S, Rao AM. Novel electrical switching behaviour and logic in carbon nanotube Y-junctions. Nat Mater, 4, 663 (2005). http://dx.doi.org/10.1038/nmat1450. crossref(new window)

44.
Cheng Y, Zhou O. Electron field emission from carbon nanotubes. Comptes Rendus Physique, 4, 1021 (2003). http://dx.doi.org/10.1016/S1631-0705(03)00103-8. crossref(new window)

45.
Modi A, Koratkar N, Lass E, Wei B, Ajayan PM. Miniaturized gas ionization sensors using carbon nanotubes. Nature, 424, 171 (2003). http://dx.doi.org/10.1038/nature01777. crossref(new window)

46.
Yue GZ, Qiu Q, Gao B, Cheng Y, Zhang J, Shimoda H, Chang S, Lu JP, Zhou O. Generation of continuous and pulsed diagnostic imaging x-ray radiation using a carbon-nanotube-based fieldemission cathode. Appl Phys Lett, 81, 355 (2002). http://dx.doi.org/10.1063/1.1492305. crossref(new window)

47.
Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science, 287, 637 (2000). http://dx.doi.org/10.1126/science.287.5453.637. crossref(new window)

48.
Ruoff RS, Tersoff J, Lorents DC, Subramoney S, Chan B. Radial deformation of carbon nanotubes by van der Waals forces. Nature, 364, 514 (1993). http://dx.doi.org/10.1038/364514a0. crossref(new window)

49.
Palaci I, Fedrigo S, Brune H, Klinke C, Chen M, Riedo E. Radial elasticity of multiwalled carbon nanotubes. Phys Rev Lett, 94, 175502 (2005). http://dx.doi.org/10.1103/PhysRevLett.94.175502. crossref(new window)

50.
Yu MF, Kowalewski T, Ruoff RS. Investigation of the radial deformability of individual carbon nanotubes under controlled indentation force. Phys Rev Lett, 85, 1456 (2000). http://dx.doi.org/10.1103/PhysRevLett.85.1456. crossref(new window)

51.
Yang YH, Li WZ. Radial elasticity of single-walled carbon nanotube measured by atomic force microscopy. Appl Phys Lett, 98, 041901 (2011). http://dx.doi.org/10.1063/1.3546170 crossref(new window)

52.
Minary-Jolandan M, Yu MF. Reversible radial deformation up to the complete flattening of carbon nanotubes in nanoindentation. J Appl Phys, 103, 073516 (2008). http://dx.doi.org/10.1063/1.2903438. crossref(new window)

53.
Ajayan PM, Stephan O, Colliex C, Trauth D. Aligned carbon nanotube arrays formed by cutting a polymer resin--nanotube composite. Science, 265, 1212 (1994). http://dx.doi.org/10.1126/science.265.5176.1212. crossref(new window)

54.
Iijima S, Brabec C, Maiti A, Bernholc J. Structural flexibility of carbon nanotubes. J Chem Phys, 104, 2089 (1996). http://dx.doi.org/10.1063/1.470966. crossref(new window)

55.
Chopra NG, Benedict LX, Crespi VH, Cohen ML, Louie SG, Zettl A. Fully collapsed carbon nanotubes. Nature, 377, 135 (1995). http://dx.doi.org/10.1038/377135a0. crossref(new window)

56.
Ruoff RS, Lorents DC. Mechanical and thermal properties of carbon nanotubes. Carbon, 33, 925 (1995). http://dx.doi.org/10.1016/0008-6223(95)00021-5. crossref(new window)

57.
Dresselhaus MS, Dresselhaus G, Eklund PC. Science of Fullerenes and Carbon Nanotubes, Academic Press, San Diego, CA (1996).

58.
Overney G, Zhong W, Tomanek D. Structural rigidity and low frequency vibrational modes of long carbon tubules. Z Phys D, 27, 93 (1993). http://dx.doi.org/10.1007/BF01436769. crossref(new window)

59.
Robertson DH, Brenner DW, Mintmire JW. Energetics of nanoscale graphitic tubules. Phys Rev B, 45, 12592 (1992). http://dx.doi.org/10.1103/PhysRevB.45.12592. crossref(new window)

60.
Tersoff J. Energies of fullerenes. Phys Rev B, 46, 15546 (1992). http://dx.doi.org/10.1103/PhysRevB.46.15546. crossref(new window)

61.
Falvo MR, Clary GJ, Taylor RM 2nd, Chi V, Brooks FP Jr, Washburn S, Superfine R. Bending and buckling of carbon nanotubes under large strain. Nature, 389, 582 (1997). http://dx.doi.org/10.1038/39282. crossref(new window)

62.
Endo M, Takeuchi K, Kobori K, Takahashi K, Kroto HW, Sarkar A. Pyrolytic carbon nanotubes from vapor-grown carbon fibers. Carbon, 33, 873 (1995). http://dx.doi.org/10.1016/0008-6223(95)00016-7. crossref(new window)

63.
Zhu YQ, Sekine T, Kobayashi T, Takazawa E, Terrones M, Terrones H. Collapsing carbon nanotubes and diamond formation under shock waves. Chem Phys Lett, 287, 689 (1998). http://dx.doi.org/10.1016/S0009-2614(98)00226-7. crossref(new window)

64.
Yu MF, Files BS, Arepalli S, Ruoff RS. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett, 84, 5552 (2000). http://dx.doi.org/10.1103/PhysRevLett.84.5552. crossref(new window)

65.
Shibutani Y, Shiozaki M, Kugimiya T, Tomita Y. Irreversible deformation of carbon nanotubes under bending. J Jpn Inst Met, 63, 1262 (1999).

66.
Li F, Cheng HM, Bai S, Su G, Dresselhaus MS. Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes. Appl Phys Lett, 77, 3161 (2000). http://dx.doi.org/10.1063/1.1324984. crossref(new window)

67.
Shen W, Jiang B, Han BS, Xie S. Investigation of the radial compression of carbon nanotubes with a scanning probe microscope. Phys Rev Lett, 84, 3634 (2000). http://dx.doi.org/10.1103/PhysRevLett.84.3634. crossref(new window)

68.
Wang ZL, Gao RP, Poncharal P, de Heer WA, Dai ZR, Pan ZW. Mechanical and electrostatic properties of carbon nanotubes and nanowires. Mater Sci Eng C, 16, 3 (2001). http://dx.doi.org/10.1016/S0928-4931(01)00293-4. crossref(new window)

69.
Demczyk BG, Wang YM, Cumings J, Hetman M, Han W, Zettl A, Ritchie RO. Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater Sci Eng A, 334, 173 (2002). http://dx.doi.org/10.1016/S0921-5093(01)01807-X. crossref(new window)

70.
Sinnott SB, Shenderova OA, White CT, Brenner DW. Mechanical properties of nanotubule fibers and composites determined from theoretical calculations and simulations. Carbon, 36, 1 (1998). http://dx.doi.org/10.1016/S0008-6223(97)00144-9. crossref(new window)

71.
Yakobson BI. Mechanical relaxation and "intramolecular plasticity" in carbon nanotubes. Appl Phys Lett, 72, 918 (1998). http://dx.doi.org/10.1063/1.120873. crossref(new window)

72.
Ru CQ. Effect of van der Waals forces on axial buckling of a double- walled carbon nanotube. J Appl Phys, 87, 7227 (2000). http://dx.doi.org/10.1063/1.372973. crossref(new window)

73.
Guanghua G, Tahir C, William AG, III. Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes. Nanotechnology, 9, 184 (1998). http://dx.doi.org/10.1088/0957-4484/9/3/007. crossref(new window)

74.
Hernandez E, Goze C, Bernier P, Rubio A. Elastic properties of C and $B_xC_yN_z$ composite nanotubes. Phys Rev Lett, 80, 4502 (1998). http://dx.doi.org/10.1103/PhysRevLett.80.4502. crossref(new window)

75.
Ashcroft NW, Mermin ND. Solid State Physics, Harcourt Brace, Orlando, FL (1976).

76.
Kim P, Shi L, Majumdar A, McEuen PL. Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett, 87, 215502 (2001). http://dx.doi.org/10.1103/PhysRevLett.87.215502. crossref(new window)

77.
Yu C, Shi L, Yao Z, Li D, Majumdar A. Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Lett, 5, 1842 (2005). http://dx.doi.org/10.1021/nl051044e. crossref(new window)

78.
Maultzsch J, Reich S, Thomsen C, Dobardzic E, Milosevic I, Damnjanovic M. Phonon dispersion of carbon nanotubes. Solid State Commun, 121, 471 (2002). http://dx.doi.org/10.1016/S0038-1098(02)00025-X. crossref(new window)

79.
Ishii H, Kobayashi N, Hirose K. Electron-phonon coupling effect on quantum transport in carbon nanotubes using time-dependent wave-packet approach. Physica E, 40, 249 (2007). http://dx.doi.org/10.1016/j.physe.2007.06.006. crossref(new window)

80.
Maeda T, Horie C. Phonon modes in single-wall nanotubes with a small diameter. Physica B, 263-264, 479 (1999). http://dx.doi.org/10.1016/S0921-4526(98)01415-X. crossref(new window)

81.
Kasuya A, Saito Y, Sasaki Y, Fukushima M, Maedaa T, Horie C, Nishina Y. Size dependent characteristics of single wall carbon nanotubes. Mater Sci Eng A, 217-218, 46 (1996). http://dx.doi.org/10.1016/S0921-5093(96)10357-9. crossref(new window)

82.
Popov VN. Theoretical evidence for $T^{1/2}$ specific heat behavior in carbon nanotube systems. Carbon, 42, 991 (2004). http://dx.doi.org/10.1016/j.carbon.2003.12.014. crossref(new window)

83.
Georgakilas V, Kordatos K, Prato M, Guldi DM, Holzinger M, Hirsch A. Organic functionalization of carbon nanotubes. J Am Chem Soc, 124, 760 (2002). http://dx.doi.org/10.1021/ja016954m. crossref(new window)

84.
Hirsch A. Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed, 41, 1853 (2002). http://dx.doi.org/10.1002/1521-3773(20020603)41:11<1853::AID-ANIE1853>3.0.CO;2-N. crossref(new window)

85.
Kim JH, Min BG. Functionalization of multi-walled carbon nanotube by treatment with dry ozone gas for the enhanced dispersion and adhesion in polymeric composites. Carbon Lett, 11, 298 (2010). http://dx.doi.org/10.5714/CL.2010.11.4.298. crossref(new window)

86.
Saeed K. Review on the properties, dispersion and toxicology of carbon nanotubes. J Chem Soc Pak, 32, 561 (2010).

87.
Wu HC, Chang X, Liu L, Zhao F, Zhao Y. Chemistry of carbon nanotubes in biomedical applications. J Mater Chem, 20, 1036 (2010). http://dx.doi.org/10.1039/B911099M. crossref(new window)

88.
Hersam MC. Progress towards monodisperse single-walled carbon nanotubes. Nat Nanotechnol, 3, 387 (2008). http://dx.doi.org/10.1038/nnano.2008.135. crossref(new window)

89.
Wang H. Dispersing carbon nanotubes using surfactants. Curr Opin Colloid Interface Sci, 14, 364 (2009). http://dx.doi.org/10.1016/j.cocis.2009.06.004. crossref(new window)

90.
Vaisman L, Wagner HD, Marom G. The role of surfactants in dispersion of carbon nanotubes. Adv Colloid Interface Sci, 128-130, 37 (2006). http://dx.doi.org/10.1016/j.cis.2006.11.007. crossref(new window)

91.
NANOSAFE 2008. Available from: http://www.nanosafe2008.org.

92.
Helland A, Wick P, Koehler A, Schmid K, Som C. Reviewing the environmental and human health knowledge base of carbon nanotubes. Environ Health Perspect, 115, 1125 (2007). http://dx.doi.org/10.1289/ehp.9652. crossref(new window)

93.
Baughman RH, Zakhidov AA, de Heer WA. Carbon nanotubes--the route toward applications. Science, 297, 787 (2002). http://dx.doi.org/10.1126/science.1060928. crossref(new window)

94.
Cao A, Zhu H, Zhang X, Li X, Ruan D, Xu C, Wei B, Liang J, Wu D. Hydrogen storage of dense-aligned carbon nanotubes. Chem Phys Lett, 342, 510 (2001). http://dx.doi.org/10.1016/S0009-2614(01)00619-4. crossref(new window)

95.
Kar S, Bindal RC, Prabhakar S, Tewari PK, Dasgupta K, Sathiyamoorthy D. Potential of carbon nanotubes in water purification: an approach towards the development of an integrated membrane system. Int J Nucl Desalin, 3, 143 (2008). http://dx.doi.org/10.1504/IJND.2008.020221. crossref(new window)

96.
Garcia-Gutierrez MC, Nogales A, Rueda DR, Domingo C, Garcia-Ramos JV, Broza G, Roslaniec Z, Schulte K, Davies RJ, Ezquerra TA. Templating of crystallization and shear-induced self-assembly of single-wall carbon nanotubes in a polymer-nanocomposite. Polymer, 47, 341 (2006). http://dx.doi.org/10.1016/j.polymer.2005.11.018. crossref(new window)

97.
Siochi EJ, Working DC, Park C, Lillehei PT, Rouse JH, Topping CC, Bhattacharyya AR, Kumar S. Melt processing of SWCNT-polyimide nanocomposite fibers. Composites B, 35, 439 (2004). http://dx.doi.org/10.1016/j.compositesb.2003.09.007. crossref(new window)

98.
Bhattacharyya AR, Potschke P, Abdel-Goad M, Fischer D. Effect of encapsulated SWNT on the mechanical properties of melt mixed PA12/SWNT composites. Chem Phys Lett, 392, 28 (2004). http://dx.doi.org/10.1016/j.cplett.2004.05.045. crossref(new window)

99.
Saeed K, Park SY. Preparation of multiwalled carbon nanotube/nylon-6 nanocomposites by in situ polymerization. J Appl Polym Sci, 106, 3729 (2007). http://dx.doi.org/10.1002/app.26942. crossref(new window)