JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Contact resistance in graphene channel transistors
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 14, Issue 3,  2013, pp.162-170
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2013.14.3.162
 Title & Authors
Contact resistance in graphene channel transistors
Song, Seung Min; Cho, Byung Jin;
  PDF(new window)
 Abstract
The performance of graphene-based electronic devices is critically affected by the quality of the graphene-metal contact. The understanding of graphene-metal is therefore critical for the successful development of graphene-based electronic devices, especially field-effect-transistors. Here, we provide a review of the peculiar properties of graphene-metal contacts, including work function pinning, the charge transport mechanism, the impact of the process on the contract resistance, and other factors.
 Keywords
graphene;contact resistance;work function;charge transport;
 Language
English
 Cited by
1.
Improvement of graphene–metal contact resistance by introducing edge contacts at graphene under metal, Applied Physics Letters, 2014, 104, 18, 183506  crossref(new windwow)
2.
MXene Electrode for the Integration of WSe2and MoS2Field Effect Transistors, Advanced Functional Materials, 2016, 26, 29, 5328  crossref(new windwow)
3.
Josephson-Like Behaviour of the Current–Voltage Characteristics of Multi-graphene Flakes Embedded in Polystyrene, Journal of Low Temperature Physics, 2016, 185, 5-6, 515  crossref(new windwow)
4.
Leakage and field emission in side-gate graphene field effect transistors, Applied Physics Letters, 2016, 109, 2, 023510  crossref(new windwow)
5.
Metal-graphene heterojunction modulation via H2 interaction, Applied Physics Letters, 2016, 109, 3, 033109  crossref(new windwow)
6.
Contact properties to CVD-graphene on GaAs substrates for optoelectronic applications, Nanotechnology, 2014, 25, 33, 335707  crossref(new windwow)
7.
Graphene field effect transistors with niobium contacts and asymmetric transfer characteristics, Nanotechnology, 2015, 26, 47, 475202  crossref(new windwow)
8.
Work function tuning of metal/graphene stack electrode, Applied Physics Letters, 2014, 104, 8, 083512  crossref(new windwow)
 References
1.
Lemme MC, Echtermeyer TJ, Baus M, Kurz H. A graphene field-effect device. IEEE Electron Device Lett, 28, 282 (2007). http://dx.doi.org/10.1109/Led.2007.891668. crossref(new window)

2.
Meric I, Baklitskaya N, Kim P, Shepard KL. RF performance of top-gated, zero-bandgap graphene field-effect transistors. IEEE International Electron Devices Meeting, San Francisco, CA, 1 (2008). http://dx.doi.org/10.1109/IEDM.2008.4796738. crossref(new window)

3.
Lin YM, Jenkins KA, Valdes-Garcia A, Small JP, Farmer DB, Avouris P. Operation of graphene transistors at gigahertz frequencies. Nano Lett, 9, 422 (2009). http://dx.doi.org/10.1021/Nl803316h. crossref(new window)

4.
Lin YM, Jenkins K, Farmer D, Valdes-Garcia A, Avouris P, Sung CY, Chiu HY, Ek B. Development of graphene FETs for high frequency electronics. IEEE International Electron Devices Meeting, Baltimore, MD, 1 (2009). http://dx.doi.org/10.1109/IEDM.2009.5424378. crossref(new window)

5.
Farmer DB, Chiu HY, Lin YM, Jenkins KA, Xia FN, Avouris P. Utilization of a buffered dielectric to achieve high field-effect carrier mobility in graphene transistors. Nano Lett, 9, 4474 (2009). http://dx.doi.org/10.1021/Nl902788u. crossref(new window)

6.
Dimitrakopoulos C, Lin YM, Grill A, Farmer DB, Freitag M, Sun YN, Han SJ, Chen ZH, Jenkins KA, Zhu Y, Liu ZH, McArdle TJ, Ott JA, Wisnieff R, Avouris P. Wafer-scale epitaxial graphene growth on the Si-face of hexagonal SiC (0001) for high frequency transistors. J Vac Sci Technol, B, 28, 985 (2010). http://dx.doi.org/10.1116/1.3480961. crossref(new window)

7.
Lin YM, Chiu HY, Jenkins KA, Farmer DB, Avouris P, Valdes-Garcia A. Dual-gate graphene FETs with f(T) of 50 GHz. IEEE Electron Device Lett, 31, 68 (2010). http://dx.doi.org/10.1109/led.2009.2034876. crossref(new window)

8.
Lin YM, Dimitrakopoulos C, Jenkins KA, Farmer DB, Chiu HY, Grill A, Avouris P. 100-GHz transistors from wafer-scale epitaxial graphene. Science, 327, 662 (2010). http://dx.doi.org/10.1126/science.1184289. crossref(new window)

9.
Pince E, Kocabas C. Investigation of high frequency performance limit of graphene field effect transistors. Appl Phys Lett, 97, 173106 (2010). http://dx.doi.org/10.1063/1.3506506. crossref(new window)

10.
Liao L, Lin YC, Bao M, Cheng R, Bai J, Liu Y, Qu Y, Wang KL, Huang Y, Duan X. High-speed graphene transistors with a selfaligned nanowire gate. Nature, 467, 305 (2010). http://dx.doi.org/10.1038/nature09405. crossref(new window)

11.
Chauhan J, Guo J. Assessment of high-frequency performance limits of graphene field-effect transistors. Nano Res, 4, 571 (2011). http://dx.doi.org/10.1007/s12274-011-0113-1. crossref(new window)

12.
Das S, Appenzeller J. An all-graphene radio frequency low noise amplifier. IEEE Radio Frequency Integrated Circuits Symposium, Baltimore, MD, 1 (2011). http://dx.doi.org/10.1109/RFIC.2011.5940628. crossref(new window)

13.
Koswatta SO, Valdes-Garcia A, Steiner MB, Lin YM, Avouris P. Ultimate RF potential of carbon electronics. IEEE Trans Microwave Theory Tech, 59, 2739 (2011). http://dx.doi.org/10.1109/tmtt.2011.2150241. crossref(new window)

14.
Moon JS, Curtis D, Zehnder D, Kim S, Gaskill DK, Jernigan GG, Myers-Ward RL, Eddy CR, Campbell PM, Lee KM, Asbeck P. Low-phase-noise graphene FETs in ambipolar RF applications. IEEE Electron Device Lett, 32, 270 (2011). http://dx.doi.org/10.1109/led.2010.2100074. crossref(new window)

15.
Wu Y, Lin Y, Bol AA, Jenkins KA, Xia F, Farmer DB, Zhu Y, Avouris P. High-frequency, scaled graphene transistors on diamond-like carbon. Nature, 472, 74 (2011). http://dx.doi.org/10.1038/nature09979. crossref(new window)

16.
Badmaev A, Che YC, Li Z, Wang C, Zhou CW. Self-aligned fabrication of graphene RF transistors with T-shaped gate. ACS Nano, 6, 3371 (2012). http://dx.doi.org/10.1021/Nn300393c. crossref(new window)

17.
Cheng R, Bai JW, Liao L, Zhou HL, Chen Y, Liu LX, Lin YC, Jiang S, Huang Y, Duan XF. High-frequency self-aligned graphene transistors with transferred gate stacks. Proc Natl Acad Sci U S A, 109, 11588 (2012). http://dx.doi.org/10.1073/pnas.1205696109. crossref(new window)

18.
Wu YQ, Jenkins KA, Valdes-Garcia A, Farmer DB, Zhu Y, Bol AA, Dimitrakopoulos C, Zhu WJ, Xia FN, Avouris P, Lin YM. State-of-the-art graphene high-frequency electronics. Nano Lett, 12, 3062 (2012). http://dx.doi.org/10.1021/Nl300904k. crossref(new window)

19.
Kim S, Nah J, Jo I, Shahrjerdi D, Colombo L, Yao Z, Tutuc E, Banerjee SK. Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric. Appl Phys Lett, 94, 062107 (2009). http://dx.doi.org/10.1063/1.3077021. crossref(new window)

20.
Shin WC, Kim TY, Sul O, Choa BJ. Seeding atomic layer deposition of high-k dielectric on graphene with ultrathin poly (4-vinylphenol) layer for enhanced device performance and reliability. Appl Phys Lett, 101, 033507 (2012). http://dx.doi.org/10.1063/1.4737645. crossref(new window)

21.
Xia F, Perebeinos V, Lin Y, Wu Y, Avouris P. The origins and limits of metal-graphene junction resistance. Nat Nanotechnol, 6, 179 (2011). http://dx.doi.org/10.1038/nnano.2011.6. crossref(new window)

22.
Moon JS, Antcliffe M, Seo HC, Curtis D, Lin S, Schmitz A, Milosavljevic I, Kiselev AA, Ross RS, Gaskill DK, Campbell PM, Fitch RC, Lee KM, Asbeck P. Ultra-low resistance ohmic contacts in graphene field effect transistors. Appl Phys Lett, 100, 203512 (2012). http://dx.doi.org/10.1063/1.4719579. crossref(new window)

23.
Farmer DB, Lin YM, Avouris P. Graphene field-effect transistors with self-aligned gates. Appl Phys Lett, 97, 013103 (2010). http://dx.doi.org/10.1063/1.3459972. crossref(new window)

24.
Liu Z, Bol AA, Haensch W. Large-scale graphene transistors with enhanced performance and reliability based on interface engineering by phenylsilane self-assembled monolayers. Nano Lett, 11, 523 (2010). http://dx.doi.org/10.1021/nl1033842. crossref(new window)

25.
Nagashio K, Nishimura T, Kita K, Toriumi A. Metal/graphene contact as a performance Killer of ultra-high mobility graphene analysis of intrinsic mobility and contact resistance. IEEE International Electron Devices Meeting, Baltimore, MD, 1 (2009). http://dx.doi.org/10.1109/IEDM.2009.5424297. crossref(new window)

26.
Blake P, Yang R, Morozov S, Schedin F, Ponomarenko L, Zhukov A, Nair R, Grigorieva I, Novoselov K, Geim A. Influence of metal contacts and charge inhomogeneity on transport properties of graphene near the neutrality point. Solid State Commun, 149, 1068 (2009). http://dx.doi.org/10.1016/j.ssc.2009.02.039. crossref(new window)

27.
Murali R, Yang Y, Brenner K, Beck T, Meindl JD. Breakdown current density of graphene nanoribbons. Appl Phys Lett, 94, 243114 (2009). http://dx.doi.org/10.1063/1.3147183. crossref(new window)

28.
Xia F, Farmer DB, Lin Y, Avouris P. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett, 10, 715 (2010). http://dx.doi.org/10.1021/nl9039636. crossref(new window)

29.
Russo S, Craciun M, Yamamoto M, Morpurgo A, Tarucha S. Contact resistance in graphene-based devices. Physica E, 42, 677 (2010). http://dx.doi.org/10.1016/j.physe.2009.11.080. crossref(new window)

30.
Venugopal A, Colombo L, Vogel E. Contact resistance in few and multilayer graphene devices. Appl Phys Lett, 96, 013512 (2010). http://dx.doi.org/10.1063/1.3290248. crossref(new window)

31.
Nagashio K, Nishimura T, Kita K, Toriumi A. Contact resistivity and current flow path at metal/graphene contact. Appl Phys Lett, 97, 143514 (2010). http://dx.doi.org/10.1063/1.3491804. crossref(new window)

32.
Schwierz F. Graphene transistors. Nat Nanotechnol, 5, 487 (2010). http://dx.doi.org/10.1038/nnano.2010.89. crossref(new window)

33.
Leonard F, Talin AA. Electrical contacts to one-and two-dimensional nanomaterials. Nat Nanotechnol, 6, 773 (2011). http://dx.doi.org/10.1038/nnano.2011.196. crossref(new window)

34.
Giovannetti G, Khomyakov P, Brocks G, Karpan V, Van den Brink J, Kelly P. Doping graphene with metal contacts. Phys Rev Lett, 101, 26803 (2008). http://dx.doi.org/10.1103/PhysRevLett.101.026803. crossref(new window)

35.
Khomyakov P, Starikov A, Brocks G, Kelly P. Nonlinear screening of charges induced in graphene by metal contacts. Phys Rev B, 82, 115437 (2010). http://dx.doi.org/10.1103/PhysRevB.82.115437. crossref(new window)

36.
Yu YJ, Zhao Y, Ryu S, Brus LE, Kim KS, Kim P. Tuning the graphene work function by electric field effect. Nano Lett, 9, 3430 (2009). http://dx.doi.org/10.1021/nl901572a. crossref(new window)

37.
Yan L, Punckt C, Aksay IA, Mertin W, Bacher G. Local voltage drop in a single functionalized graphene sheet characterized by Kelvin probe force microscopy. Nano Lett, 11, 3543 (2011). http://dx.doi.org/10.1021/nl201070c. crossref(new window)

38.
Lee EJH, Balasubramanian K, Weitz RT, Burghard M, Kern K. Contact and edge effects in graphene devices. Nat Nanotechnol, 3, 486 (2008). http://dx.doi.org/10.1038/nnano.2008.172. crossref(new window)

39.
Xia F, Mueller T, Golizadeh-Mojarad R, Freitag M, Lin Y, Tsang J, Perebeinos V, Avouris P. Photocurrent imaging and efficient photon detection in a graphene transistor. Nano Lett, 9, 1039 (2009). http://dx.doi.org/10.1021/nl8033812. crossref(new window)

40.
Mueller T, Xia F, Freitag M, Tsang J, Avouris P. Role of contacts in graphene transistors: A scanning photocurrent study. Phys Rev B, 79, 245430 (2009). http://dx.doi.org/10.1103/PhysRevB.79.245430. crossref(new window)

41.
Knoch J, Chen Z, Appenzeller J. Properties of metal-graphene contacts. IEEE Trans Nanotechnol, 11, 513 (2011). http://dx.doi.org/10.1109/TNANO.2011.2178611. crossref(new window)

42.
Low T, Hong S, Appenzeller J, Datta S, Lundstrom MS. Conductance asymmetry of graphene pn junction. IEEE Trans Electron Devices, 56, 1292 (2009). http://dx.doi.org/10.1109/TED.2009.2017646. crossref(new window)

43.
Nagashio K, Toriumi A. Density-of-states limited contact resistance in graphene field-effect transistors. Jpn J Appl Phys, 50, 070108 (2011). http://dx.doi.org/10.1143/jjap.50.070108. crossref(new window)

44.
Nouchi R, Tanigaki K. Charge-density depinning at metal contacts of graphene field-effect transistors. Appl Phys Lett, 96, 253503 (2010). http://dx.doi.org/10.1063/1.3456383. crossref(new window)

45.
Huard B, Stander N, Sulpizio J, Goldhaber-Gordon D. Evidence of the role of contacts on the observed electron-hole asymmetry in graphene. Phys Rev B, 78, 121402 (2008). http://dx.doi.org/10.1103/PhysRevB.78.121402. crossref(new window)

46.
Chen Z, Appenzeller J. Gate modulation of graphene contacts-on the scaling of graphene FETs. Symposium on VLSI Technology, Honolulu, HI, 128 (2009).

47.
Song SM, Park JK, Sul OJ, Cho BJ. Determination of work function of graphene under a metal electrode and its role in contact resistance. Nano Lett, 12, 3887 (2012). http://dx.doi.org/10.1021/nl300266p. crossref(new window)

48.
Wang QJ, Che JG. Origins of distinctly different behaviors of Pd and Pt contacts on graphene. Phys Rev Lett, 103, 66802 (2009). http://dx.doi.org/10.1103/PhysRevLett.103.066802. crossref(new window)

49.
Ran Q, Gao M, Guan X, Wang Y, Yu Z. First-principles investigation on bonding formation and electronic structure of metal-graphene contacts. Appl Phys Lett, 94, 103511 (2009). http://dx.doi.org/10.1063/1.3095438. crossref(new window)

50.
Berdebes D, Low T, Sui Y, Appenzeller J, Lundstrom MS. Substrate gating of contact resistance in graphene transistors. IEEE Trans Electron Devices, 58, 3925 (2011). http://dx.doi.org/10.1109/TED.2011.2163800. crossref(new window)

51.
Farmer DB, Golizadeh-Mojarad R, Perebeinos V, Lin YM, Tulevski GS, Tsang JC, Avouris P. Chemical doping and electron-hole conduction asymmetry in graphene devices. Nano Lett, 9, 388 (2008). http://dx.doi.org/10.1021/nl803214a. crossref(new window)

52.
Grosse KL, Bae MH, Lian F, Pop E, King WP. Nanoscale Joule heating, Peltier cooling and current crowding at graphenemetal contacts. Nat Nanotechnol, 6, 287 (2011). http://dx.doi.org/10.1038/nnano.2011.39. crossref(new window)

53.
Xu HT, Wang S, Zhang ZY, Wang ZX, Xu HL, Peng LM. Contact length scaling in graphene field-effect transistors. Appl Phys Lett, 100, 103501 (2012). http://dx.doi.org/10.1063/1.3691629. crossref(new window)

54.
Murrmann H, Widmann D. Current crowding on metal contacts to planar devices. IEEE Trans Electron Devices, 16, 1022 (1969). http://dx.doi.org/10.1109/T-ED.1969.16904. crossref(new window)

55.
Cheianov VV, Fal'ko VI. Selective transmission of Dirac electrons and ballistic magnetoresistance of n-p junctions in graphene. Phys Rev B, 74, 041403 (2006). http://dx.doi.org/10.1103/Physrevb.74.041403. crossref(new window)

56.
Katsnelson MI, Novoselov KS, Geim AK. Chiral tunnelling and the Klein paradox in graphene. Nat Phys, 2, 620 (2006). http://dx.doi.org/10.1038/Nphys384. crossref(new window)

57.
Matsuda Y, Deng WQ, Goddard WA. Contact resistance for "end-contacted" metal- graphene and metal- nanotube interfaces from quantum mechanics. J Phys Chem C, 114, 17845 (2010). http://dx.doi.org/10.1021/jp806437y. crossref(new window)

58.
Song SM, Cho BJ. Investigation of interaction between graphene and dielectrics. Nanotechnology, 21, 335706 (2010). http://dx.doi.org/10.1088/0957-4484/21/33/335706. crossref(new window)

59.
Oh JG, Shin YS, Shin WC, Sul OJ, Cho BJ. Dirac voltage tunability by $Hf_1-_xLa_xO$ gate dielectric composition modulation for graphene field effect devices. Appl Phys Lett, 99, 193503 (2011). http://dx.doi.org/10.1063/1.3659691. crossref(new window)

60.
Martin J, Akerman N, Ulbricht G, Lohmann T, Smet J, Von Klitzing K, Yacoby A. Observation of electron-hole puddles in graphene using a scanning single-electron transistor. Nat Phys, 4, 144 (2007). http://dx.doi.org/10.1038/nphys781. crossref(new window)

61.
Zhang Y, Brar VW, Girit C, Zettl A, Crommie MF. Origin of spatial charge inhomogeneity in graphene. Nat Phys, 5, 722 (2009). http://dx.doi.org/10.1038/nphys1365. crossref(new window)

62.
Liu H, Liu Y, Zhu D. Chemical doping of graphene. J Mater Chem, 21, 3335 (2011). http://dx.doi.org/10.1039/C0JM02922J. crossref(new window)

63.
Levesque PL, Sabri SS, Aguirre CM, Guillemette J, Siaj M, Desjardins P, Szkopek T, Martel R. Probing charge transfer at surfaces using graphene transistors. Nano Lett, 11, 132 (2010). http://dx.doi.org/10.1021/nl103015w. crossref(new window)

64.
Casiraghi C, Pisana S, Novoselov K, Geim A, Ferrari A. Raman fingerprint of charged impurities in graphene. Appl Phys Lett, 91, 233108 (2007). http://dx.doi.org/10.1063/1.2818692. crossref(new window)

65.
Berciaud S, Ryu S, Brus LE, Heinz TF. Probing the intrinsic properties of exfoliated graphene: Raman spectroscopy of free-standing monolayers. Nano Lett, 9, 346 (2008). http://dx.doi.org/10.1021/nl8031444. crossref(new window)

66.
Lafkioti M, Krauss B, Lohmann T, Zschieschang U, Klauk H, Klitzing K, Smet JH. Graphene on a hydrophobic substrate: doping reduction and hysteresis suppression under ambient conditions. Nano Lett, 10, 1149 (2010). http://dx.doi.org/10.1021/nl903162a. crossref(new window)

67.
Pirkle A, Chan J, Venugopal A, Hinojos D, Magnuson C, Mc-Donnell S, Colombo L, Vogel E, Ruoff R, Wallace R. The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to $SiO_2$. Appl Phys Lett, 99, 122108 (2011). http://dx.doi.org/10.1063/1.3643444. crossref(new window)

68.
Lin YC, Lu CC, Yeh CH, Jin C, Suenaga K, Chiu PW. Graphene annealing: how clean can it be? Nano Lett, 12, 414 (2011). http://dx.doi.org/10.1021/nl203733r. crossref(new window)

69.
Cheng Z, Zhou Q, Wang C, Li Q, Wang C, Fang Y. Toward intrinsic graphene surfaces: a systematic study on thermal annealing and wet-chemical treatment of SiO2-supported graphene devices. Nano Lett, 11, 767 (2011). http://dx.doi.org/10.1021/nl103977d. crossref(new window)

70.
Dean CR, Young AF, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard KL, Hone J. Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol, 5, 722 (2010). http://dx.doi.org/10.1038/nnano.2010.172. crossref(new window)

71.
Xue J, Sanchez-Yamagishi J, Bulmash D, Jacquod P, Deshpande A, Watanabe K, Taniguchi T, Jarillo-Herrero P, LeRoy BJ. Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nat Mater, 10, 282 (2011). http://dx.doi.org/10.1038/nmat2968. crossref(new window)

72.
Decker R, Wang Y, Brar VW, Regan W, Tsai H-Z, Wu Q, Gannett W, Zettl A, Crommie MF. Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy. Nano Lett, 11, 2291 (2011). http://dx.doi.org/10.1021/nl2005115. crossref(new window)

73.
Kim K, Choi JY, Kim T, Cho SH, Chung HJ. A role for graphene in silicon-based semiconductor devices. Nature, 479, 338 (2011). http://dx.doi.org/10.1038/nature10680. crossref(new window)

74.
Robinson JA, LaBella M, Zhu M, Hollander M, Kasarda R, Hughes Z, Trumbull K, Cavalero R, Snyder D. Contacting graphene. Appl Phys Lett, 98, 053103 (2011). http://dx.doi.org/10.1063/1.3549183. crossref(new window)

75.
Choi MS, Lee SH, Yoo WJ. Plasma treatments to improve metal contacts in graphene field effect transistor. J Appl Phys, 110, 073305 (2011). http://dx.doi.org/10.1063/1.3646506. crossref(new window)

76.
Liu W, Li M, Xu S, Zhang Q, Zhu Y, Pey K, Hu H, Shen Z, Zou X, Wang J. Understanding the contact characteristics in single or multi-layer graphene devices: the impact of defects (carbon vacancies) and the asymmetric transportation behavior. IEEE International Electron Devices Meeting, San Francisco, CA, 23.3.1 (2010). http://dx.doi.org/10.1109/IEDM.2010.5703420. crossref(new window)

77.
Matsubara K, Sugihara K, Tsuzuku T. Electrical-resistance in the C-direction of graphite. Phys Rev B, 41, 969 (1990). http://dx.doi.org/10.1103/PhysRevB.41.969. crossref(new window)

78.
Khatami Y, Li H, Xu C, Banerjee K. Metal-to-multilayer-graphene contact-Part I: Contact resistance modeling. IEEE Trans Electron Devices, 59, 2444 (2012). http://dx.doi.org/10.1109/TED.2012.2205256. crossref(new window)

79.
Franklin AD, Han SJ, Bol AA, Perebeinos V. Double Contacts for Improved Performance of Graphene Transistors. IEEE Electron Device Lett, 33, 17 (2012). http://dx.doi.org/10.1109/Led.2011.2173154. crossref(new window)

80.
Smith JT, Franklin AD, Farmer DB, Dimitrakopoulos CD. Reducing contact resistance in graphene devices through contact area patterning. ACS Nano, 7, 3661 (2013). http://dx.doi.org/10.1021/nn400671z. crossref(new window)