JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Carbon nanofiber-reinforced polymeric nanocomposites
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 14, Issue 4,  2013, pp.197-205
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2013.14.4.197
 Title & Authors
Carbon nanofiber-reinforced polymeric nanocomposites
Jang, Changwoon; Hutchins, John; Yu, Jaesang;
  PDF(new window)
 Abstract
Five vapor-grown carbon nanofiber (VGCNF) reinforced vinyl ester (VE) nanocomposite configurations were fabricated, imaged, and mechanically tested in order to obtain information on the influence and the interactions of the role of the microstructure at lower length scales on the observed continuum level properties/response. Three independent variables (the nanofiber weight fraction and two types of nanofiber mixing techniques) were chosen to be varied from low, middle, and high values at equally spaced intervals. Multiple mixing techniques were studied to gain insight into the effect of mixing on the VGCNF dispersion within the VE matrix. The point count method was used for both lower length-scale imaging techniques to provide quantitative approximations of the magnitude and the distribution of such lower length-scale features. Finally, an inverse relationship was shown to exist between the stiffness and strength properties of the resulting nanocomposites under uniaxial quasistatic compression loading.
 Keywords
vapor-grown carbon-nanofiber;scanning electron microscopy;transmission electron microscopy;nanocomposites;
 Language
English
 Cited by
 References
1.
Gojny FH, Wichmann MHG, Kopke U, Fiedler B, Schulte K. Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content. Composites Sci Technol, 64, 2363 (2004). http://dx.doi.org/10.1016/j.compscitech.2004.04.002. crossref(new window)

2.
Lee J, Nouranian S, Torres GW, Lacy TE, Toghiani H, Pittman CU, DuBien JL. Characterization, prediction, and optimization of flexural properties of vapor-grown carbon nanofiber/vinyl ester nanocomposites by response surface modeling. J Appl Polym Sci, 130, 2087 (2013). http://dx.doi.org/10.1002/app.39380. crossref(new window)

3.
Thostenson ET, Ziaee S, Chou TW. Processing and electrical properties of carbon nanotube/vinyl ester nanocomposites. Composites Sci Technol, 69, 801 (2009). http://dx.doi.org/10.1016/j.compscitech.2008.06.023. crossref(new window)

4.
Tibbetts GG, Lake ML, Strong KL, Rice BP. A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Composites Sci Technol, 67, 1709 (2007). http://dx.doi.org/10.1016/j.compscitech.2006.06.015. crossref(new window)

5.
Torres GW, Nouranian S, Lacy TE, Toghiani H, Pittman CU, DuBien JL. Statistical characterization of the impact strengths of vapor-grown carbon nanofiber/vinyl ester nanocomposites using a central composite design. J Appl Polym Sci, 128, 1070 (2013). http://dx.doi.org/10.1002/app.38190. crossref(new window)

6.
Jang C, Nouranian S, Lacy TE, Gwaltney SR, Toghiani H, Pittman CU, Jr. Molecular dynamics simulations of oxidized vapor-grown carbon nanofiber surface interactions with vinyl ester resin monomers. Carbon, 50, 748 (2012). http://dx.doi.org/10.1016/j.carbon.2011.09.013. crossref(new window)

7.
Yu J, Lacy TE, Toghiani H, Pittman CU, Schneider J. Determination of carbon nanofiber morphology in vinyl ester nanocomposites. J Compos Mater, 46, 1943 (2012). http://dx.doi.org/10.1177/0021998311428361. crossref(new window)

8.
Harper CA. Handbook of Plastics, Elastomers, and Composites. 4th ed., McGraw-Hill, New York, 598 (2002).

9.
Abdelwahab M, Agag T, Akelah A, Takeichi T. Synthesis and characterization of styrene modified vinylester resin-clay nanocomposites. Polym Eng Sci, 52, 125 (2012). http://dx.doi.org/10.1002/pen.22054. crossref(new window)

10.
Alhuthali A, Low IM. Mechanical and fracture properties of halloysite nanotube reinforced vinyl-ester nanocomposites. J Appl Polym Sci, 130, 1716 (2013). http://dx.doi.org/10.1002/app.39348. crossref(new window)

11.
Chandramohan A, Mandhakini M, Dinakaran K, Alagar M. Synthesis and characterization of bismaleimide modified vinyl ester monomer-unsaturated polyester intercrosslinked hybrid matrices. Polym Polym Compos, 21, 233 (2013).

12.
Marsh G. Vinyl ester -the midway boat building resin. Reinf Plast, 51, 20 (2007). http://dx.doi.org/10.1016/S0034-3617(07)70248-5. crossref(new window)

13.
Alhuthali A, Low IM, Dong C. Characterisation of the water absorption, mechanical and thermal properties of recycled cellulose fibre reinforced vinyl-ester eco-nanocomposites. Composites B, 43, 2772 (2012). http://dx.doi.org/10.1016/j.compositesb.2012.04.038. crossref(new window)

14.
Ham HT, Choi YS, Chung IJ. An explanation of dispersion states of single-walled carbon nanotubes in solvents and aqueous surfactant solutions using solubility parameters. J Colloid Interface Sci, 286, 216 (2005). http://dx.doi.org/10.1016/j.jcis.2005.01.002. crossref(new window)

15.
Li SH, Yang XJ, Huang K, Li M, Xia JL. Preparation and characterization of dimer fatty acids-based vinyl ester resin monomer. Adv Mater Res, 721, 86 (2013). http://dx.doi.org/10.4028/www.scientific.net/AMR.721.86. crossref(new window)

16.
Zhang N, Sun F, Liu H, Dai H, Chen HC. Application of vinyl ester resin to anticorrosion of acid making in copper metallurgy industry. Corros Prot, 34, 449 (2013).

17.
Vautard F, Ozcan S, Meyer H. Properties of thermo-chemically surface treated carbon fibers and of their epoxy and vinyl ester composites. Composites A, 43, 1120 (2012). http://dx.doi.org/10.1016/j.compositesa.2012.02.018. crossref(new window)

18.
Ray D, Sarkar BK, Rana AK, Bose NR. The mechanical properties of vinylester resin matrix composites reinforced with alkali-treated jute fibres. Composites A, 32, 119 (2001). http://dx.doi.org/10.1016/S1359-835X(00)00101-9. crossref(new window)

19.
Ravindra Rama S, Rai SK. Performance analysis of waste silk fabric-reinforced vinyl ester resin laminates. J Compos Mater, 45, 2475 (2011). http://dx.doi.org/10.1177/0021998311401097. crossref(new window)

20.
Bai J, Goodridge RD, Hague RJM, Song M. Improving the mechanical properties of laser-sintered polyamide 12 through incorporation of carbon nanotubes. Polym Eng Sci, 53, 1937 (2013). http://dx.doi.org/10.1002/pen.23459. crossref(new window)

21.
Nouranian S, Toghiani H, Lacy TE, Pittman CU, Dubien J. Dynamic mechanical analysis and optimization of vapor-grown carbon nanofiber/vinyl ester nanocomposites using design of experiments. J Compos Mater, 45, 1647 (2011). http://dx.doi.org/10.1177/0021998310385027. crossref(new window)

22.
Hu Z, Arefin MRH, Yan X, Fan QH. Mechanical property characterization of carbon nanotube modified polymeric nanocomposites by computer modeling. Composites B, 56, 100 (2014). http://dx.doi.org/10.1016/j.compositesb.2013.08.052. crossref(new window)

23.
Zhu J, Peng H, Rodriguez-Macias F, Margrave JL, Khabashesku VN, Imam AM, Lozano K, Barrera EV. Reinforcing epoxy polymer composites through covalent integration of functionalized nanotubes. Adv Funct Mater, 14, 643 (2004). http://dx.doi.org/10.1002/adfm.200305162. crossref(new window)

24.
Pandey, G., Thostenson, E.T. Carbon nanotube-based multifunctional polymer nanocomposites. Polymer Reviews. 52, 355-416, (2012). crossref(new window)

25.
Paiva MC, Zhou B, Fernando KAS, Lin Y, Kennedy JM, Sun YP. Mechanical and morphological characterization of polymer-carbon nanocomposites from functionalized carbon nanotubes. Carbon, 42, 2849 (2004). http://dx.doi.org/10.1016/j.carbon.2004.06.031. crossref(new window)

26.
Yeh MK, Tai NH, Lin YJ. Mechanical properties of phenolic-based nanocomposites reinforced by multi-walled carbon nanotubes and carbon fibers. Composites A, 39, 677 (2008). http://dx.doi.org/10.1016/j.compositesa.2007.07.010. crossref(new window)

27.
Mathur RB, Singh BP, Dhami TL, Kalra Y, Lal N, Rao R, Rao AM. Influence of carbon nanotube dispersion on the mechanical properties of phenolic resin composites. Polym Compos, 31, 321 (2010). http://dx.doi.org/10.1002/pc.20807. crossref(new window)

28.
Guadagno L, De Vivo B, Di Bartolomeo A, Lamberti P, Sorrentino A, Tucci V, Vertuccio L, Vittoria V. Effect of functionalization on the thermo-mechanical and electrical behavior of multi-wall carbon nanotube/epoxy composites. Carbon, 49, 1919 (2011). http://dx.doi.org/10.1016/j.carbon.2011.01.017. crossref(new window)

29.
Guadagno L, Naddeo C, Vittoria V, Sorrentino A, Vertuccio L, Raimondo M, Tucci V, de Vivo B, Lamberti P, Lannuzzo G, Calvi E, Russo S. Cure behavior and physical properties of epoxy resin-filled with multiwalled carbon nanotubes. J Nanosci Nanotechnol, 10, 2686 (2010). http://dx.doi.org/10.1166/jnn.2010.1417. crossref(new window)

30.
Guadagno L, Vertuccio L, Sorrentino A, Raimondo M, Naddeo C, Vittoria V, Iannuzzo G, Calvi E, Russo S. Mechanical and barrier properties of epoxy resin filled with multi-walled carbon nanotubes. Carbon, 47, 2419 (2009). http://dx.doi.org/10.1016/j.carbon.2009.04.035. crossref(new window)

31.
Zhou YX, Wu PX, Cheng ZY, Ingram J, Jeelani S. Improvement in electrical, thermal and mechanical properties of epoxy by filling carbon nanotube. eXPRESS Polym Lett, 2, 40 (2008). http://dx.doi.org/10.3144/expresspolymlett.2008.6. crossref(new window)

32.
Zhou Y, Pervin F, Lewis L, Jeelani S. Experimental study on the thermal and mechanical properties of multi-walled carbon nanotube-reinforced epoxy. Mater Sci Eng A, 452-453, 657 (2007). http://dx.doi.org/10.1016/j.msea.2006.11.066. crossref(new window)

33.
Her S, Yeh S. Influence of multi-walled carbon nanotubes on the mechanical properties of nanocomposites. Adv Mater Res, 139-141, 9 (2010). http://dx.doi.org/10.4028/www.scientific.net/AMR.139-141.9. crossref(new window)

34.
Coleman JN, Khan U, Gun'ko YK. Mechanical reinforcement of polymers using carbon nanotubes. Adv Mater, 18, 689 (2006). http://dx.doi.org/10.1002/adma.200501851. crossref(new window)

35.
Khattab A, Liu C, Chirdon W, Hebert C. Mechanical and thermal characterization of carbon nanofiber reinforced low-density polyethylene composites. J Thermoplast Compos Mater, 26, 954 (2013). http://dx.doi.org/10.1177/0892705711432361. crossref(new window)

36.
Nouranian S, Toghiani H, Lacy TE, Pittman CU, Jr. Viscoelastic properties of vapor-grown carbon nanofiber/vinyl ester nanocomposites. Proceedings of the International SAMPE Symposium and Exhibition, Baltimore, MD (2009).

37.
Hutchins J, Sisti J, Nouranian S, Toghiani H, Pittman CU, Jr. High strain rate behavior of carbon nanofiber reinforced vinyl ester. Proceedings of the 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Palm Springs, CA (2009).

38.
Villmow T, Potschke P, Pegel S, Häussler L, Kretzschmar B. Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in a poly(lactic acid) matrix. Polymer, 49, 3500 (2008). http://dx.doi.org/10.1016/j.polymer.2008.06.010. crossref(new window)

39.
Andrews R, Jacques D, Minot M, Rantell T. Fabrication of carbon multiwall nanotube/polymer composites by shear mixing. Macromol Mater Eng, 287, 395 (2002). http://dx.doi.org/10.1002/1439-2054(20020601)287:6<395::AID-MAME395>3.0.CO;2-S. crossref(new window)

40.
Fotiou I, Baltopoulos A, Vavouliotis A, Kostopoulos V. Microwave curing of epoxy polymers reinforced with carbon nanotubes. J Appl Polym Sci, 129, 2754 (2013). http://dx.doi.org/10.1002/app.39003. crossref(new window)

41.
Combessis A, Mazel C, Maugin M, Flandin L. Optical density as a probe of carbon nanotubes dispersion in polymers. J Appl Polym Sci, 130, 1778 (2013). http://dx.doi.org/10.1002/app.39333. crossref(new window)

42.
Jeong SH, Kim KK, Jeong SJ, An KH, Lee SH, Lee YH. Optical absorption spectroscopy for determining carbon nanotube concentration in solution. Synth Met, 157, 570 (2007). http://dx.doi.org/10.1016/j.synthmet.2007.06.012. crossref(new window)

43.
Tibbetts GG, McHugh JJ. Mechanical properties of vapor-grown carbon fiber composites with thermoplastic matrices. J Mater Res, 14, 2871 (1999). http://dx.doi.org/10.1557/JMR.1999.0383. crossref(new window)

44.
Samarah IK, Weheba GS, Lacy TE. Characterization of the effect of material configuration and impact parameters on damage tolerance of sandwich composites. SAE Technical Papers, 2006-01-2443 (2006). http://dx.doi.org/10.4271/2006-01-2443.

45.
Dasari A, Misra RDK. Microscopic aspects of surface deformation and fracture of high density polyethylene. Mater Sci Eng A, 367, 248 (2004). http://dx.doi.org/10.1016/j.msea.2003.10.202. crossref(new window)

46.
Dasari A, Misra RDK. On the strain rate sensitivity of high density polyethylene and polypropylenes. Mater Sci Eng A, 358, 356 (2003). http://dx.doi.org/10.1016/S0921-5093(03)00330-7. crossref(new window)

47.
Lapique F, Meakin P, Feder J, Jossang T. Relationships between microstructure, fracture-surface morphology, and mechanical properties in ethylene and propylene polymers and copolymers. J Appl Polym Sci, 77, 2370 (2000). http://dx.doi.org/10.1002/1097-4628(20000912)77:11<2370::AID-APP5>3.0.CO;2-6. crossref(new window)

48.
JEOL USA. JEOL Guide to Scanning Microscope Observation. Available from: http://www.jeolusa.com/tabid/320/DMXModule/692/EntryId/1/Default.aspx.