JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Growth of magnesium oxide nanoparticles onto graphene oxide nanosheets by sol-gel process
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 14, Issue 4,  2013, pp.206-209
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2013.14.4.206
 Title & Authors
Growth of magnesium oxide nanoparticles onto graphene oxide nanosheets by sol-gel process
Lee, Ju Ran; Koo, Hye Young;
  PDF(new window)
 Abstract
Nanocomposites comprised of graphene oxide (GO) nanosheets and magnesium oxide (MgO) nanoparticles were synthesized by a sol-gel process. The synthesized samples were studied by X-ray powder diffraction, atomic force microscopy, transmission electron microscopy, and energy-dispersive X-ray analysis. The results show that the MgO nanoparticles, with an average diameter of 70 nm, are decorated uniformly on the surface of the GOs. By controlling the concentration of the MgO precursors and reaction cycles, it was possible to control the loading density and the size of the resulting MgO particles. Because the MgO particles are robustly anchored on the GO structure, the MgO/GOs nanocomposites will have future applications in the fields of adsorption and chemical sensing.
 Keywords
magnesium oxide nanoparticles;magnesium oxide;graphene;graphene oxide;nanocomposites;
 Language
English
 Cited by
 References
1.
Li WC, Lu AH, Weidenthaler C, Schuth F. Hard-templating pathway to create mesoporous magnesium oxide. Chem Mater, 16, 5676 (2004). http://dx.doi.org/10.1021/cm048759n. crossref(new window)

2.
Makhluf S, Dror R, Nitzan Y, Abramovich Y, Jelinek R, Gedanken A. Microwave-assisted synthesis of nanocrystalline MgO and its use as a bacteriocide. Adv Funct Mater, 15, 1708 (2005). http://dx.doi.org/10.1002/adfm.200500029. crossref(new window)

3.
Choudary BM, Mulukutla RS, Klabunde KJ. Benzylation of aromatic compounds with different crystallites of MgO. J Am Chem Soc, 125, 2020 (2003). http://dx.doi.org/10.1021/ja0211757. crossref(new window)

4.
Fang XS, Ye CH, Zhang LD, Zhang JX, Zhao JW, Yan P. Direct observation of the growth process of MgO nanoflowers by a aimple chemical route. Small, 1, 422 (2005). http://dx.doi.org/10.1002/smll.200400087. crossref(new window)

5.
Stankic S, Muler M, Diwald O, Sterrer M, Knoinger E, Bernardi J. Size-dependent optical properties of MgO nanocubes. Angew Chem Int Ed, 44, 4917 (2005). http://dx.doi.org/10.1002/anie.200500663. crossref(new window)

6.
Zhu K, Hu J, Kuel C, Richards R. Efficient preparation and catalytic activity of MgO(111) nanosheets. Angew Chem Int Ed, 45, 7277 (2006). http://dx.doi.org/10.1002/anie.200602393. crossref(new window)

7.
Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science, 306, 666 (2004). http://dx.doi.org/10.1126/science.1102896. crossref(new window)

8.
Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS. Graphenebased composite materials. Nature, 442, 282 (2006). http://dx.doi.org/10.1038/nature04969. crossref(new window)

9.
Stoller MD, Park S, Zhu Y, An J, Ruoff RS. Graphene-based ultracapacitors. Nano Lett, 8, 3498 (2008). http://dx.doi.org/10.1021/nl802558y. crossref(new window)

10.
Koo HY, Lee HJ, Go HA, Lee YB, Bae TS, Kim JK, Choi WS. Graphene-based multifunctional iron oxide nanosheets with tunable properties. Chemistry, 17, 1214 (2011). http://dx.doi.org/10.1002/chem.201002252. crossref(new window)

11.
Hummers WS, Jr., Offeman RE. Preparation of graphitic oxide. J Am Chem Soc, 80, 1339 (1958). http://dx.doi.org/10.1021/ja01539a017. crossref(new window)

12.
Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud'homme RK, Car R, Saville DA, Aksay IA. Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B, 110, 8535 (2006). http://dx.doi.org/10.1021/jp060936f. crossref(new window)