JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Performance-determining factors in flexible transparent conducting single-wall carbon nanotube film
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 14, Issue 4,  2013, pp.255-258
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2013.14.4.255
 Title & Authors
Performance-determining factors in flexible transparent conducting single-wall carbon nanotube film
Song, Young Il; Lee, Jung Woo; Kim, Tae Yoo; Jung, Hwan Jung; Jung, Yong Chae; Suh, Su Jeung; Yang, Cheol-Min;
  PDF(new window)
 Abstract
Flexible transparent conducting films (TCFs) were fabricated by dip-coating single-wall carbon nanotubes (SWCNTs) onto a flexible polyethylene terephthalate (PET) film. The amount of coated SWCNTs was controlled simply by dipping number. Because the performance of SWCNT-based TCFs is influenced by both electrical conductance and optical transmittance, we evaluated the film performance by introducing a film property factor using both the number of interconnected SWCNT bundles at intersection points, and the coverage of SWCNTs on the PET substrate, in field emission scanning electron microscopic images. The microscopic film property factor was in an excellent agreement with the macroscopic one determined from electrical conductance and optical transmittance measurements, especially for a small number of dippings. Therefore, the most crucial factor governing the performance of the SWCNT-based TCFs is a SWCNT-network structure with a large number of intersection points for a minimum amount of deposited SWCNTs.
 Keywords
single-wall carbon nanotube;transparent conducting film;dip coating method;
 Language
English
 Cited by
1.
Superhydrophobic carbon-based materials: a review of synthesis, structure, and applications,;;

Carbon letters, 2014. vol.15. 2, pp.89-104 crossref(new window)
2.
무전해 니켈 도금된 탄소나노튜브의 전자파 차폐 특성,김도영;윤국진;이영석;

공업화학, 2014. vol.25. 3, pp.268-273 crossref(new window)
3.
A study on thermal conductivity of electroless Ni-B plated multi-walled carbon nanotubes-reinforced composites,;;;

Journal of Industrial and Engineering Chemistry, 2014. vol.20. 5, pp.3421-3424 crossref(new window)
1.
Electromagnetic Interference Shielding Characteristics of Electroless Nickel Plated Carbon Nanotubes, Applied Chemistry for Engineering, 2014, 25, 3, 268  crossref(new windwow)
2.
Superhydrophobic carbon-based materials: a review of synthesis, structure, and applications, Carbon letters, 2014, 15, 2, 89  crossref(new windwow)
3.
A study on thermal conductivity of electroless Ni–B plated multi-walled carbon nanotubes-reinforced composites, Journal of Industrial and Engineering Chemistry, 2014, 20, 5, 3421  crossref(new windwow)
 References
1.
Wu Z, Chen Z, Du X, Logan JM, Sippel J, Nikolou M, Kamaras K, Reynolds JR, Tanner DB, Hebard AF, Rinzler AG. Transparent, conductive carbon nanotube films. Science, 305, 1273 (2004). http://dx.doi.org/10.1126/science.1101243. crossref(new window)

2.
Cao Q, Hur SH, Zhu ZT, Sun YG, Wang CJ, Meitl MA, Shim M, Rogers JA. Highly bendable, transparent thin-film transistors that use carbon-nanotube-based conductors and semiconductors with elastomeric dielectrics. Adv Mater, 18, 304 (2006). http://dx.doi.org/10.1002/adma.200501740. crossref(new window)

3.
Fanchini G, Unalan HE, Chhowalla M. Optoelectronic properties of transparent and conducting single-wall carbon nanotube thin films. Appl Phys Lett, 88, 191919 (2006). http://dx.doi.org/10.1063/1.2202703. crossref(new window)

4.
De Volder MFL, Tawfick SH, Baughman RH, Hart AJ. Carbon nanotubes: present and future commercial applications. Science, 339, 535 (2013). http://dx.doi.org/10.1126/science.1222453. crossref(new window)

5.
Park HG, Lee MJ, Kim K, Seo DS. Transparent conductive single wall carbon nanotube network films for liquid crystal displays. ECS Solid State Lett, 1, R31 (2012). http://dx.doi.org/10.1149/2.008206ssl. crossref(new window)

6.
Yang Y, Jeong S, Hu L, Wu H, Lee SW, Cui Y. Transparent lithiumion batteries. Proc Natl Acad Sci U S A, 108, 13013 (2011). http://dx.doi.org/10.1073/pnas.1102873108. crossref(new window)

7.
Zhang M, Fang S, Zakhidov AA, Lee SB, Aliev AE, Williams CD, Atkinson KR, Baughman RH. Strong, transparent, multifunctional, carbon nanotube sheets. Science, 309, 1215 (2005). http://dx.doi.org/10.1126/science.1115311. crossref(new window)

8.
Lee SH, Teng CC, Ma CCM, Wang I. Highly transparent and conductive thin films fabricated with nano-silver/double-walled carbon nanotube composites. J Colloid Interface Sci, 364, 1 (2011). http://dx.doi.org/10.1016/j.jcis.2011.08.029. crossref(new window)

9.
Kim MJ, Shin DW, Kim JY, Park SH, Han It, Yoo JB. The production of a flexible electroluminescent device on polyethylene terephthalate films using transparent conducting carbon nanotube electrode. Carbon, 47, 3461 (2009). http://dx.doi.org/10.1016/j.carbon.2009.08.013. crossref(new window)

10.
Shin EC, Jeong GH. Fabrication of transparent, flexible and conductive films using as-grown few-walled carbon nanotubes. Curr Appl Phys, 11, S73 (2011). http://dx.doi.org/10.1016/j.cap.2011.07.012. crossref(new window)

11.
Meitl MA, Zhou Y, Gaur A, Jeon S, Usrey ML, Strano MS, Rogers JA. Solution casting and transfer printing single-walled carbon nanotube films. Nano Lett, 4, 1643 (2004). http://dx.doi.org/10.1021/nl0491935. crossref(new window)

12.
Saran N, Parikh K, Suh DS, Munoz E, Kolla H, Manohar SK. Fabrication and characterization of thin films of single-walled carbon nanotube bundles on flexible plastic substrates. J Am Chem Soc, 126, 4462 (2004). http://dx.doi.org/10.1021/ja037273p. crossref(new window)

13.
Shimoda H, Oh SJ, Geng HZ, Walker RJ, Zhang XB, McNeil LE, Zhou O. Self-assembly of carbon nanotubes. Adv Mater, 14, 899 (2002). http://dx.doi.org/10.1002/1521-4095(20020618)14:12<899::AID-ADMA899>3.0.CO;2-2. crossref(new window)

14.
Song YI, Yang CM, Kim DY, Kanoh H, Kaneko K. Flexible transparent conducting single-wall carbon nanotube film with network bridging method. J Colloid Interface Sci, 318, 365 (2008). http://dx.doi.org/10.1016/j.jcis.2007.10.051. crossref(new window)

15.
Pasquier AD, Unalan HE, Kanwal A, Miller S, Chhowalla M. Conducting and transparent single-wall carbon nanotube electrodes for polymer-fullerene solar cells. Appl Phys Lett, 87, 203511 (2005). http://dx.doi.org/10.1063/1.2132065. crossref(new window)

16.
Kim KK, Bae DJ, Yang CM, An KH, Lee JY, Lee YH. Nanodispersion of single-walled carbon nanotubes using dichloroethane. J Nanosci Nanotechnol, 5, 1055 (2005). http://dx.doi.org/10.1166/jnn.2005.159. crossref(new window)

17.
Song YI, Kim GY, Choi HK, Jeong HJ, Kim KK, Yang CM, Lim SC, An KH, Jung KT, Lee YH. Fabrication of carbon nanotube field emitters using a dip-coating method. Chem Vap Depos, 12, 375 (2006). http://dx.doi.org/10.1002/cvde.200506442. crossref(new window)

18.
Hu L, Hecht DS, Gruner G. Percolation in transparent and conducting carbon nanotube networks. Nano Lett, 4, 2513 (2004). http://dx.doi.org/10.1021/nl048435y. crossref(new window)

19.
Unalan HE, Fanchini G, Kanwal A, Du Pasquier A, Chhowalla M. Design criteria for transparent single-wall carbon nanotube thin-film transistors. Nano Lett, 6, 677 (2006). http://dx.doi.org/10.1021/nl052406l. crossref(new window)

20.
Darhuber AA, Troian SM, Davis JM, Miller SM, Wagner S. Selective dip-coating of chemically micropatterned surfaces. J Appl Phys, 88, 5119 (2000). http://dx.doi.org/10.1063/1.1317238. crossref(new window)