JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Hierarchical porous carbon nanofibers via electrospinning
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 15, Issue 1,  2014, pp.1-14
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2014.15.1.001
 Title & Authors
Hierarchical porous carbon nanofibers via electrospinning
Raza, Aikifa; Wang, Jiaqi; Yang, Shan; Si, Yang; Ding, Bin;
  PDF(new window)
 Abstract
Carbon nanofibers (CNFs) with diameters in the submicron and nanometer range exhibit high specific surface area, hierarchically porous structure, flexibility, and super strength which allow them to be used in the electrode materials of energy storage devices, and as hybrid-type filler in carbon fiber reinforced plastics and bone tissue scaffold. Unlike catalytic synthesis and other methods, electrospinning of various polymeric precursors followed by stabilization and carbonization has become a straightforward and convenient way to fabricate continuous CNFs. This paper is a comprehensive and brief review on the latest advances made in the development of electrospun CNFs with major focus on the promising applications accomplished by appropriately regulating the microstructural, mechanical, and electrical properties of as-spun CNFs. Additionally, the article describes the various strategies to make a variety of carbon CNFs for energy conversion and storage, catalysis, sensor, adsorption/separation, and biomedical applications. It is envisioned that electrospun CNFs will be the key materials of green science and technology through close collaborations with carbon fibers and carbon nanotubes.
 Keywords
hierarchically porous carbon nanofibers;activated carbon nanofibers;electrospinning;polymer precursors;
 Language
English
 Cited by
1.
Structure and property of PFSA/PES porous catalytic nanofibers, Catalysis Today, 2016, 276, 133  crossref(new windwow)
2.
Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine, Chem. Soc. Rev., 2016, 45, 12, 3479  crossref(new windwow)
3.
Nickel and nickel phosphide nanoparticles embedded in electrospun carbon fibers as favourable electrocatalysts for hydrogen evolution, Chemical Engineering Journal, 2016, 303, 167  crossref(new windwow)
4.
Electrospinning of Cross-Linked Magnetic Chitosan Nanofibers for Protein Release, AAPS PharmSciTech, 2015, 16, 6, 1480  crossref(new windwow)
5.
KOH-activated graphite nanofibers as CO2adsorbents, Carbon letters, 2016, 19, 99  crossref(new windwow)
6.
Functionalized polyacrylonitrile-nanofiber based immunosensor for Vibrio cholerae detection, Journal of Applied Polymer Science, 2016, 133, 44  crossref(new windwow)
7.
In-situ synthesis of nanofibers with various ratios of BiOClx/BiOBry/BiOIz for effective trichloroethylene photocatalytic degradation, Applied Surface Science, 2016, 384, 192  crossref(new windwow)
8.
Polydopamine-derived porous carbon fiber/cobalt composites for efficient oxygen reduction reactions, J. Mater. Chem. A, 2015, 3, 46, 23299  crossref(new windwow)
9.
Controllable synthesis of CuS decorated TiO2nanofibers for enhanced photocatalysis, CrystEngComm, 2015, 17, 29, 5496  crossref(new windwow)
10.
Synthesis, characterization, and KOH activation of nanoporous carbon for increasing CO2 adsorption capacity, Research on Chemical Intermediates, 2014, 40, 7, 2535  crossref(new windwow)
 References
1.
Fitzer E, Gkogkidis A, Heine M. Carbon fibres and their composites (a review). High Temp High Press, 16, 363 (1984).

2.
Iijima S. Helical microtubules of graphitic carbon. Nature, 354, 56 (1991). http://dx.doi.org/10.1038/354056a0. crossref(new window)

3.
Liu L, He P, Zhou K, Chen T. Microwave absorption properties of helical carbon nanofibers-coated carbon fibers. AIP Adv, 3, 082112 (2013). http://dx.doi.org/10.1063/1.4818495. crossref(new window)

4.
Baker RTK. Catalytic growth of carbon filaments. Carbon, 27, 315 (1989). http://dx.doi.org/10.1016/0008-6223(89)90062-6. crossref(new window)

5.
Cooley JF. Apparatus for electrically dispersing fluids. US Patent 692631 (1902).

6.
Huang C, Soenen SJ, Rejman J, Lucas B, Braeckmans K, Demeester J, De Smedt SC. Stimuli-responsive electrospun fibers and their applications. Chem Soc Rev, 40, 2417 (2011). http://dx.doi.org/10.1039/C0CS00181C. crossref(new window)

7.
Wang X, Ding B, Sun G, Wang M, Yu J. Electro-spinning/netting: a strategy for the fabrication of three-dimensional polymer nano-fiber/nets. Prog Mater Sci, 58, 1173 (2013). http://dx.doi.org/10.1016/j.pmatsci.2013.05.001. crossref(new window)

8.
Shang Y, Si Y, Raza A, Yang L, Mao X, Ding B, Yu J. An in situ polymerization approach for the synthesis of superhydrophobic and superoleophilic nanofibrous membranes for oil-water separation. Nanoscale, 4, 7847 (2012). http://dx.doi.org/10.1039/C2NR33063F. crossref(new window)

9.
Wang J, Raza A, Si Y, Cui L, Ge J, Ding B, Yu J. Synthesis of superamphiphobic breathable membranes utilizing $SiO_2$ nanoparticles decorated fluorinated polyurethane nanofibers. Nanoscale, 4, 7549 (2012). http://dx.doi.org/10.1039/C2NR32883F. crossref(new window)

10.
Yang L, Raza A, Si Y, Mao X, Shang Y, Ding B, Yu J, Al-Deyab SS. Synthesis of superhydrophobic silica nanofibrous membranes with robust thermal stability and flexibility via in situ polymerization. Nanoscale, 4, 6581 (2012). http://dx.doi.org/10.1039/C2NR32095A. crossref(new window)

11.
Dersch R, Steinhart M, Boudriot U, Greiner A, Wendorff JH. Nanoprocessing of polymers: applications in medicine, sensors, catalysis, photonics. Polym Adv Technol, 16, 276 (2005). http://dx.doi.org/10.1002/pat.568. crossref(new window)

12.
Ding B, Wang M, Wang X, Yu J, Sun G. Electrospun nanomaterials for ultrasensitive sensors. Mater Today, 13, 16 (2010). http://dx.doi.org/10.1016/S1369-7021(10)70200-5. crossref(new window)

13.
Ra EJ, An KH, Kim KK, Jeong SY, Lee YH. Anisotropic electrical conductivity of MWCNT/PAN nanofiber paper. Chem Phys Lett, 413, 188 (2005). http://dx.doi.org/10.1016/j.cplett.2005.07.061. crossref(new window)

14.
Zhang L, Hsieh YL. Nanoporous ultrahigh specific surface polyacrylonitrile fibres. Nanotechnology, 17, 4416 (2006). http://dx.doi.org/10.1088/0957-4484/17/17/022. crossref(new window)

15.
Kong QQ, Yang MG, Chen CM, Yang YG, Wen YF, Wang MZ. Preparation and characterization of graphene-reinforced polyacrylonitrile-based carbon nanofibers. New Carbon Mater, 27, 188 (2012).

16.
Wu M, Wang Q, Li K, Wu Y, Liu H. Optimization of stabilization conditions for electrospun polyacrylonitrile nanofibers. Polym Degradation Stab, 97, 1511 (2012). http://dx.doi.org/10.1016/j.polymdegradstab.2012.05.001. crossref(new window)

17.
Zhang L, Hsieh YL. Carbon nanofibers with nanoporosity and hollow channels from binary polyacrylonitrile systems. Eur Polym J, 45, 47 (2009). http://dx.doi.org/10.1016/j.eurpolymj.2008.09.035. crossref(new window)

18.
Wang Y, Serrano S, Santiago-Aviles JJ. Raman characterization of carbon nanofibers prepared using electrospinning. Synth Met, 138, 423 (2003). http://dx.doi.org/10.1016/S0379-6779(02)00472-1. crossref(new window)

19.
Wang Y, Santiago-Aviles JJ. Large negative magnetoresistance and two-dimensional weak localization in carbon nanofiber fabricated using electrospinning. J Appl Phys, 94, 1721 (2003). http://dx.doi.org/10.1063/1.1587268. crossref(new window)

20.
Zussman E, Chen X, Ding W, Calabri L, Dikin DA, Quintana JP, Ruoff RS. Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers. Carbon, 43, 2175 (2005). http://dx.doi.org/10.1016/j.carbon.2005.03.031. crossref(new window)

21.
Kim C, Yang KS, Kojima M, Yoshida K, Kim YJ, Kim YA, Endo M. Fabrication of electrospinning-derived carbon nanofiber webs for the anode material of lithium-ion secondary batteries. Adv Funct Mater, 16, 2393 (2006). http://dx.doi.org/10.1002/adfm.200500911. crossref(new window)

22.
Kim C, Yang KS. Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning. Appl Phys Lett, 83, 1216 (2003). http://dx.doi.org/10.1063/1.1599963. crossref(new window)

23.
Prilutsky S, Zussman E, Cohen Y. The effect of embedded carbon nanotubes on the morphological evolution during the carbonization of poly(acrylonitrile) nanofibers. Nanotechnology, 19, 165603 (2008). http://dx.doi.org/10.1088/0957-4484/19/16/165603. crossref(new window)

24.
Ko F, Gogotsi Y, Ali A, Naguib N, Ye H, Yang GL, Li C, Willis P. Electrospinning of continuous carbon nanotube-filled nanofiber yarns. Adv Mater, 15, 1161 (2003). http://dx.doi.org/10.1002/adma.200304955. crossref(new window)

25.
Kim S, Lim SK. Preparation of $TiO_2$-embedded carbon nanofibers and their photocatalytic activity in the oxidation of gaseous acetaldehyde. Appl Catal B, 84, 16 (2008). http://dx.doi.org/10.1016/j.apcatb.2008.02.025. crossref(new window)

26.
Oh GY, Ju YW, Jung HR, Lee WJ. Preparation of the novel manganese- embedded PAN-based activated carbon nanofibers by electrospinning and their toluene adsorption. J Anal Appl Pyrolysis, 81, 211 (2008). http://dx.doi.org/10.1016/j.jaap.2007.11.006. crossref(new window)

27.
Si Y, Ren T, Ding B, Yu J, Sun G. Synthesis of mesoporous magnetic $Fe_3O_4$@carbon nanofibers utilizing in situ polymerized polybenzoxazine for water purification. J Mater Chem, 22, 4619 (2012). http://dx.doi.org/10.1039/C2JM00036A. crossref(new window)

28.
Ren T, Si Y, Yang J, Ding B, Yang X, Hong F, Yu J. Polyacrylonitrile/polybenzoxazine-based $Fe_3O_4$@carbon nanofibers: hierarchical porous structure and magnetic adsorption property. J Mater Chem, 22, 15919 (2012). http://dx.doi.org/10.1039/C2JM33214K. crossref(new window)

29.
Ju YW, Choi GR, Jung HR, Lee WJ. Electrochemical properties of electrospun PAN/MWCNT carbon nanofibers electrodes coated with polypyrrole. Electrochim Acta, 53, 5796 (2008). http://dx.doi.org/10.1016/j.electacta.2008.03.028. crossref(new window)

30.
Shao D, Wei Q, Zhang L, Cai Y, Jiang S. Surface functionalization of carbon nanofibers by sol-gel coating of zinc oxide. Appl Surf Sci, 254, 6543 (2008). http://dx.doi.org/10.1016/j.apsusc.2008.04.055. crossref(new window)

31.
Shin J, Ryu WH, Park KS, Kim ID. Morphological evolution of carbon nanofibers encapsulating SnCo alloys and its effect on growth of the solid electrolyte interphase layer. ACS Nano, 7, 7330 (2013). http://dx.doi.org/10.1021/nn403003b. crossref(new window)

32.
Cheng Y, Li T, Fang C, Zhang M, Liu X, Yu R, Hu J. Soft-templated synthesis of mesoporous carbon nanospheres and hollow carbon nanofibers. Appl Surf Sci, 282, 862 (2013). http://dx.doi.org/10.1016/j.apsusc.2013.06.072. crossref(new window)

33.
Kim BJ, Kil H, Watanabe N, Seo MH, Kim BH, Yang KS, Kato O, Miyawaki J, Mochida I, Yoon SH. Preparation of novel isotropic pitch with high softening point and solvent solubility for pitchbased electrospun carbon nanofiber. Curr Org Chem, 17, 1463 (2013). http://dx.doi.org/10.2174/1385272811317130013. crossref(new window)

34.
Park SH, Kim C, Choi YO, Yang KS. Preparations of pitch-based CF/ACF webs by electrospinning. Carbon, 41, 2655 (2003). http://dx.doi.org/10.1016/S0008-6223(03)00272-0. crossref(new window)

35.
Park SH, Kim C, Jeong YI, Lim DY, Lee YE, Yang KS. Activation behaviors of isotropic pitch-based carbon fibers from electrospinning and meltspinning. Synth Met, 146, 207 (2004). http://dx.doi.org/10.1016/j.synthmet.2004.07.004. crossref(new window)

36.
Zhu Y, Zhang JC, Zhai J, Zheng YM, Feng L, Jiang L. Multifunctional carbon nanofibers with conductive, magnetic and superhydrophobic properties. Chemphyschem, 7, 336 (2006). http://dx.doi.org/10.1002/cphc.200500407. crossref(new window)

37.
Xuyen NT, Ra EJ, Geng HZ, Kim KK, An KH, Lee YH. Enhancement of conductivity by diameter control of polyimide-based electrospun carbon nanofibers. J Phys Chem B, 111, 11350 (2007). http://dx.doi.org/10.1021/jp075541q. crossref(new window)

38.
Smirnova VE, Gofman IV, Ivan'kova EM, Didenko AL, Krestinin AV, Zvereva GI, Svetlichnyi VM, Yudin VE. Effect of singlewalled carbon nanotubes and carbon nanofibers on the structure and mechanical properties of thermoplastic polyimide matrix films. Polym Sci Ser A, 55, 268 (2013). http://dx.doi.org/10.1134/S0965545X1304007X. crossref(new window)

39.
Seki N, Arai T, Suzuki Y, Kawakami H. Novel polyimide-based electrospun carbon nanofibers prepared using ion-beam irradiation. Polymer, 53, 2062 (2012). http://dx.doi.org/10.1016/j.polymer.2012.03.026. crossref(new window)

40.
Kim C, Choi YO, Lee WJ, Yang KS. Supercapacitor performances of activated carbon fiber webs prepared by electrospinning of PMDA-ODA poly(amic acid) solutions. Electrochim Acta, 50, 883 (2004). http://dx.doi.org/10.1016/j.electacta.2004.02.072. crossref(new window)

41.
Chung GS, Jo SM, Kim BC. Properties of carbon nanofibers prepared from electrospun polyimide. J Appl Polym Sci, 97, 165 (2005). http://dx.doi.org/10.1002/app.21742. crossref(new window)

42.
Kim C, Kim YJ, Kim YA. Fabrication and structural characterization of electro-spun polybenzimidazol-derived carbon nanofiber by graphitization. Solid State Commun, 132, 567 (2004). http://dx.doi.org/10.1016/j.ssc.2004.08.035. crossref(new window)

43.
Okuzaki H, Takahashi T, Hara Y, Yan H. Uniaxially aligned carbon nanofibers derived from electrospun precursor yarns. J Polym Sci B, 46, 305 (2008). http://dx.doi.org/10.1002/polb.21368. crossref(new window)

44.
Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature, 363, 603 (1993). http://dx.doi.org/10.1038/363603a0. crossref(new window)

45.
Kim C, Yang KS, Lee WJ. The use of carbon nanofiber electrodes prepared by electrospinning for electrochemical supercapacitors. Electrochem Solid-State Lett, 7, A397 (2004). http://dx.doi.org/10.1149/1.1801631. crossref(new window)

46.
Inagaki M, Konno H, Tanaike O. Carbon materials for electrochemical capacitors. J Power Sources, 195, 7880 (2010). http://dx.doi.org/10.1016/j.jpowsour.2010.06.036. crossref(new window)

47.
Ju YW, Park SH, Jung HR, Lee WJ. Electrospun activated carbon nanofibers electrodes based on polymer blends. J Electrochem Soc, 156, A489 (2009). http://dx.doi.org/10.1149/1.3116245. crossref(new window)

48.
Guo Q, Zhou X, Li X, Chen S, Seema A, Greiner A, Hou H. Supercapacitors based on hybrid carbon nanofibers containing multiwalled carbon nanotubes. J Mater Chem, 19, 2810 (2009). http://dx.doi.org/10.1039/B820170F. crossref(new window)

49.
Kim BH, Kim CH, Yang KS, Rahy A, Yang DJ. Electrospun vanadium pentoxide/carbon nanofiber composites for supercapacitor electrodes. Electrochim Acta, 83, 335 (2012). http://dx.doi.org/10.1016/j.electacta.2012.07.093. crossref(new window)

50.
Kim BH, Yang KS, Woo HG. Boron-nitrogen functional groups on porous nanocarbon fibers for electrochemical supercapacitors. Mater Lett, 93, 190 (2013). http://dx.doi.org/10.1016/j.matlet.2012.11.057. crossref(new window)

51.
Zhou Z, Wu XF. Graphene-beaded carbon nanofibers for use in supercapacitor electrodes: Synthesis and electrochemical characterization. J Power Sources, 222, 410 (2013). http://dx.doi.org/10.1016/j.jpowsour.2012.09.004. crossref(new window)

52.
Kim BH, Yang KS, Ferraris JP. Highly conductive, mesoporous carbon nanofiber web as electrode material for high-performance supercapacitors. Electrochim Acta, 75, 325 (2012). http://dx.doi.org/10.1016/j.electacta.2012.05.004. crossref(new window)

53.
Jung KH, Deng W, Smith DW, Jr., Ferraris JP. Carbon nanofiber electrodes for supercapacitors derived from new precursor polymer: poly(acrylonitrile-co-vinylimidazole). Electrochem Commun, 23, 149 (2012). http://dx.doi.org/10.1016/j.elecom.2012.07.026. crossref(new window)

54.
Yun YS, Im C, Park HH, Hwang I, Tak Y, Jin HJ. Hierarchically porous carbon nanofibers containing numerous heteroatoms for supercapacitors. J Power Sources, 234, 285 (2013). http://dx.doi.org/10.1016/j.jpowsour.2013.01.169. crossref(new window)

55.
Huang J, Liu Y, Hou H, You T. Simultaneous electrochemical determination of dopamine, uric acid and ascorbic acid using palladium nanoparticle-loaded carbon nanofibers modified electrode. Biosensors Bioelectron, 24, 632 (2008). http://dx.doi.org/10.1016/j.bios.2008.06.011. crossref(new window)

56.
Wu M, Wang Q, Liu X, Liu H. Biomimetic synthesis and characterization of carbon nanofiber/hydroxyapatite composite scaffolds. Carbon, 51, 335 (2013). http://dx.doi.org/10.1016/j.carbon.2012.08.061. crossref(new window)

57.
Tran C, Kalra V. Fabrication of porous carbon nanofibers with adjustable pore sizes as electrodes for supercapacitors. J Power Sources, 235, 289 (2013). http://dx.doi.org/10.1016/j.jpowsour.2013.01.080. crossref(new window)

58.
Yousef A, Akhtar MS, Barakat NAM, Motlak M, Yang OB, Kim HY. Effective NiCu NPs-doped carbon nanofibers as counter electrodes for dye-sensitized solar cells. Electrochim Acta, 102, 142 (2013). http://dx.doi.org/10.1016/j.electacta.2013.04.013 crossref(new window)

59.
Park SH, Kim BK, Lee WJ. Electrospun activated carbon nanofibers with hollow core/highly mesoporous shell structure as counter electrodes for dye-sensitized solar cells. J Power Sources, 239, 122 (2013). http://dx.doi.org/10.1016/j.jpowsour.2013.03.079. crossref(new window)

60.
Poudel P, Zhang L, Joshi P, Venkatesan S, Fong H, Qiao Q. Enhanced performance in dye-sensitized solar cells via carbon nanofibers-platinum composite counter electrodes. Nanoscale, 4, 4726 (2012). http://dx.doi.org/10.1039/C2NR30586K. crossref(new window)

61.
Park SH, Jung HR, Kim BK, Lee WJ. MWCNT/mesoporous carbon nanofibers composites prepared by electrospinning and silica template as counter electrodes for dye-sensitized solar cells. J Photochem Photobiol A, 246, 45 (2012). http://dx.doi.org/10.1016/j.jphotochem.2012.07.013. crossref(new window)

62.
Ji L, Yao Y, Toprakci O, Lin Z, Liang Y, Shi Q, Medford AJ, Millns CR, Zhang X. Fabrication of carbon nanofiber-driven electrodes from electrospun polyacrylonitrile/polypyrrole bicomponents for high-performance rechargeable lithium-ion batteries. J Power Sources, 195, 2050 (2010). http://dx.doi.org/10.1016/j.jpowsour.2009.10.021. crossref(new window)

63.
Zou L, Gan L, Kang F, Wang M, Shen W, Huang Z. Sn/C nonwoven film prepared by electrospinning as anode materials for lithium ion batteries. J Power Sources, 195, 1216 (2010). http://dx.doi.org/10.1016/j.jpowsour.2009.08.052. crossref(new window)

64.
Wang L, Ding CX, Zhang LC, Xu HW, Zhang DW, Cheng T, Chen CH. A novel carbon-silicon composite nanofiber prepared via electrospinning as anode material for high energy-density lithium ion batteries. J Power Sources, 195, 5052 (2010). http://dx.doi.org/10.1016/j.jpowsour.2010.01.088. crossref(new window)

65.
Yu Y, Yang Q, Teng D, Yang X, Ryu S. Reticular Sn nanoparticledispersed PAN-based carbon nanofibers for anode material in rechargeable lithium-ion batteries. Electrochem Commun, 12, 1187 (2010). http://dx.doi.org/10.1016/j.elecom.2010.06.015. crossref(new window)

66.
Zhang P, Guo ZP, Huang Y, Jia D, Liu HK. Synthesis of $Co_3O_4$/carbon composite nanowires and their electrochemical properties. J Power Sources, 196, 6987 (2011). http://dx.doi.org/10.1016/j.jpowsour.2010.10.090. crossref(new window)

67.
Meschini I, Nobili F, Mancini M, Marassi R, Tossici R, Savoini A, Focarete ML, Croce F. High-performance Sn@carbon nanocomposite anode for lithium batteries. J Power Sources, 226, 241 (2013). http://dx.doi.org/10.1016/j.jpowsour.2012.11.004. crossref(new window)

68.
Zou L, Gan L, Lv R, Wang M, Huang ZH, Kang F, Shen W. A film of porous carbon nanofibers that contain Sn/SnOx nanoparticles in the pores and its electrochemical performance as an anode material for lithium ion batteries. Carbon, 49, 89 (2011). http://dx.doi.org/10.1016/j.carbon.2010.08.046. crossref(new window)

69.
Kong J, Liu Z, Yang Z, Tan HR, Xiong S, Wong SY, Li X, Lu X. Carbon/$SnO_2$/carbon core/shell/shell hybrid nanofibers: tailored nanostructure for the anode of lithium ion batteries with high reversibility and rate capacity. Nanoscale, 4, 525 (2012). http://dx.doi.org/10.1039/C1NR10962F. crossref(new window)

70.
Lee BS, Seo JH, Son SB, Kim SC, Choi IS, Ahn JP, Oh KH, Lee SH, Yu WR. Face-centered-cubic lithium crystals formed in mesopores of carbon nanofiber electrodes. ACS Nano, 7, 5801 (2013). http://dx.doi.org/10.1021/nn4019625. crossref(new window)

71.
Wang MX, Huang ZH, Shimohara T, Kang F, Liang K. NO removal by electrospun porous carbon nanofibers at room temperature. Chem Eng J, 170, 505 (2011). http://dx.doi.org/10.1016/j.cej.2011.01.017. crossref(new window)

72.
Wang MX, Huang ZH, Shen K, Kang F, Liang K. Catalytically oxidation of NO into $NO_2$ at room temperature by graphitized porous nanofibers. Catal Today, 201, 109 (2013). http://dx.doi.org/10.1016/j.cattod.2012.05.050. crossref(new window)

73.
Zhang P, Shao C, Li X, Zhang M, Zhang X, Su C, Lu N, Wang K, Liu Y. An electron-rich free-standing carbon@Au core-shell nanofiber network as a highly active and recyclable catalyst for the reduction of 4-nitrophenol. Phys Chem Chem Phys, 15, 10453 (2013). http://dx.doi.org/10.1039/C3CP50917F. crossref(new window)

74.
Lin Z, Ji L, Medford A, Shi Q, Krause W, Zhang X. Electrocatalytic interaction of nano-engineered palladium on carbon nanofibers with hydrogen peroxide and $\beta$-NADH. J Solid State Electrochem, 15, 1287 (2011). http://dx.doi.org/10.1007/s10008-010-1218-2. crossref(new window)

75.
Zhang P, Shao C, Zhang Z, Zhang M, Mu J, Guo Z, Liu Y. In situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol. Nanoscale, 3, 3357 (2011). http://dx.doi.org/10.1039/C1NR10405E. crossref(new window)

76.
Mu J, Shao C, Guo Z, Zhang Z, Zhang M, Zhang P, Chen B, Liu Y. High photocatalytic activity of ZnO-carbon nanofiber heteroarchitectures.ACS Appl Mater Interfaces, 3, 590 (2011). http://dx.doi.org/10.1021/am101171a. crossref(new window)

77.
Zhang M, Shao C, Mu J, Huang X, Zhang Z, Guo Z, Zhang P, Liu Y. Hierarchical heterostructures of $Bi_2MoO_6$ on carbon nanofibers: controllable solvothermal fabrication and enhanced visible photocatalytic properties. J Mater Chem, 22, 577 (2012). http://dx.doi.org/10.1039/C1JM13470A. crossref(new window)

78.
Tang X, Liu Y, Hou H, You T. Electrochemical determination of L-tryptophan, L-tyrosine and L-cysteine using electrospun carbon nanofibers modified electrode. Talanta, 80, 2182 (2010). http://dx.doi.org/10.1016/j.talanta.2009.11.027. crossref(new window)

79.
Tang X, Liu Y, Hou H, You T. A nonenzymatic sensor for xanthine based on electrospun carbon nanofibers modified electrode. Talanta, 83, 1410 (2011). http://dx.doi.org/10.1016/j.talanta.2010.11.019. crossref(new window)

80.
Hood AR, Saurakhiya N, Deva D, Sharma A, Verma N. Development of bimetal-grown multi-scale carbon micro-nanofibers as an immobilizing matrix for enzymes in biosensor applications. Mater Sci Eng C, 33, 4313 (2013). http://dx.doi.org/10.1016/j.msec.2013.06.030. crossref(new window)

81.
Cui K, Song Y, Guo Q, Xu F, Zhang Y, Shi Y, Wang L, Hou H, Li Z. Architecture of electrospun carbon nanofibers-hydroxyapatite composite and its application act as a platform in biosensing. Sens Actuators B, 160, 435 (2011). http://dx.doi.org/10.1016/j.snb.2011.08.005. crossref(new window)

82.
Hu G, Zhou Z, Guo Y, Hou H, Shao S. Electrospun rhodium nanoparticle-loaded carbon nanofibers for highly selective amperometric sensing of hydrazine. Electrochem Commun, 12, 422 (2010). http://dx.doi.org/10.1016/j.elecom.2010.01.009. crossref(new window)

83.
Song Y, He Z, Xu F, Hou H, Wang L. pH-controlled electrocatalysis of amino acid based on electrospun cobalt nanoparticles-loaded carbon nanofibers. Sens Actuators B, 166-167, 357 (2012). http://dx.doi.org/10.1016/j.snb.2012.02.069. crossref(new window)

84.
Liu Y, Wang D, Xu L, Hou H, You T. A novel and simple route to prepare a Pt nanoparticle-loaded carbon nanofiber electrode for hydrogen peroxide sensing. Biosensors Bioelectron, 26, 4585 (2011). http://dx.doi.org/10.1016/j.bios.2011.05.034. crossref(new window)

85.
Lee JS, Kwon OS, Park SJ, Park EY, You SA, Yoon H, Jang J. Fabrication of ultrafine metal-oxide-decorated carbon nanofibers for DMMP sensor application. ACS Nano, 5, 7992 (2011). http://dx.doi.org/10.1021/nn202471f. crossref(new window)

86.
Zhang L, Wang X, Zhao Y, Zhu Z, Fong H. Electrospun carbon nano-felt surface-attached with Pd nanoparticles for hydrogen sensing application. Mater Lett, 68, 133 (2012). http://dx.doi.org/10.1016/j.matlet.2011.10.064. crossref(new window)

87.
Yang Y, Mei-Hua Z, Gang X, Zheng-Xiong J. Preparation and characterization of PAN-based ultra-fine activated carbon fiber adsorbent. J Porous Mater, 18, 379 (2011). http://dx.doi.org/10.1007/s10934-010-9388-y. crossref(new window)

88.
Ma H, Hsiao BS, Chu B. Electrospun nanofibrous membrane for heavy metal ion adsorption. Curr Org Chem, 17, 1361 (2013). http://dx.doi.org/10.2174/1385272811317130003. crossref(new window)

89.
Bai Y, Huang ZH, Wang MX, Kang F. Adsorption of benzene and ethanol on activated carbon nanofibers prepared by electrospinning. Adsorption, 19, 1035 (2013). http://dx.doi.org/10.1007/s10450-013-9524-5. crossref(new window)

90.
Lee KJ, Shiratori N, Lee GH, Miyawaki J, Mochida I, Yoon SH, Jang J. Activated carbon nanofiber produced from electrospun polyacrylonitrile nanofiber as a highly efficient formaldehyde adsorbent. Carbon, 48, 4248 (2010). http://dx.doi.org/10.1016/j.carbon.2010.07.034. crossref(new window)

91.
Schneiderman S, Zhang L, Fong H, Menkhaus TJ. Surface-functionalized electrospun carbon nanofiber mats as an innovative type of protein adsorption/purification medium with high capacity and high throughput. J Chromatogr, 1218, 8989 (2011). http://dx.doi.org/10.1016/j.chroma.2011.10.024. crossref(new window)

92.
Si Y, Ren T, Li Y, Ding B, Yu J. Fabrication of magnetic polybenzoxazine-based carbon nanofibers with $Fe_3O_4$ inclusions with a hierarchical porous structure for water treatment. Carbon, 50, 5176 (2012). http://dx.doi.org/10.1016/j.carbon.2012.06.059. crossref(new window)

93.
Jain S, Webster TJ, Sharma A, Basu B. Intracellular reactive oxidative stress, cell proliferation and apoptosis of Schwann cells on carbon nanofibrous substrates. Biomaterials, 34, 4891 (2013). http://dx.doi.org/10.1016/j.biomaterials.2013.03.055. crossref(new window)

94.
Czarnecki JS, Lafdi K, Joseph RM, Tsonis PA. Hybrid carbon-based scaffolds for applications in soft tissue reconstruction. Tissue Eng A, 18, 946 (2012). http://dx.doi.org/10.1089/ten.tea.2011.0533. crossref(new window)

95.
Liu H, Cai Q, Lian P, Fang Z, Duan S, Ryu S, Yang X, Deng X. The biological properties of carbon nanofibers decorated with $\beta$-tricalcium phosphate nanoparticles. Carbon, 48, 2266 (2010). http://dx.doi.org/10.1016/j.carbon.2010.02.042. crossref(new window)

96.
Yang Q, Sui G, Shi YZ, Duan S, Bao JQ, Cai Q, Yang XP. Osteocompatibility characterization of polyacrylonitrile carbon nanofibers containing bioactive glass nanoparticles. Carbon, 56, 288 (2013). http://dx.doi.org/10.1016/j.carbon.2013.01.014. crossref(new window)