JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Double-walled carbon nanotubes: synthesis, structural characterization, and application
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 15, Issue 2,  2014, pp.77-88
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2014.15.2.077
 Title & Authors
Double-walled carbon nanotubes: synthesis, structural characterization, and application
Kim, Yoong Ahm; Yang, Kap-Seung; Muramatsu, Hiroyuki; Hayashi, Takuya; Endo, Morinobu; Terrones, Mauricio; Dresselhaus, Mildred S.;
  PDF(new window)
 Abstract
Double walled carbon nanotubes (DWCNTs) are considered an ideal model for studying the coupling interactions between different concentric shells in multi-walled CNTs. Due to their intrinsic coaxial structures they are mechanically, thermally, and structurally more stable than single walled CNTs. Geometrically, owing to the buffer-like function of the outer tubes in DWCNTs, the inner tubes exhibit exciting transport and optical properties that lend them promise in the fabrication of field-effect transistors, stable field emitters, and lithium ion batteries. In addition, by utilizing the outer tube chemistry, DWCNTs can be useful for anchoring semiconducting quantum dots and also as effective multifunctional fillers in producing tough, conductive transparent polymer films. The inner tubes meanwhile preserve their excitonic transitions. This article reviews the synthesis of DWCNTs, their electronic structure, transport, and mechanical properties, and their potential uses.
 Keywords
double walled carbon nanotubes;coupling interaction;outer tube chemistry;Raman;
 Language
English
 Cited by
1.
Carbon nanotubes synthesis using diffusion and premixed flame methods: a review,;;;;;

Carbon letters, 2015. vol.16. 1, pp.1-10 crossref(new window)
1.
A Review of Double-Walled and Triple-Walled Carbon Nanotube Synthesis and Applications, Applied Sciences, 2016, 6, 4, 109  crossref(new windwow)
2.
Thermal treatment-induced structural changes in graphene nanoribbons obtained from partially unzipped double-walled carbon nanotubes, RSC Adv., 2016, 6, 94, 91562  crossref(new windwow)
3.
Optical sensitivity of mussel protein-coated double-walled carbon nanotubes on the iron–DOPA conjugation bond, RSC Adv., 2016, 6, 20, 16308  crossref(new windwow)
4.
Spontaneously restored electrical conductivity of bioactive gel comprising mussel adhesive protein-coated carbon nanotubes, RSC Adv., 2016, 6, 90, 87044  crossref(new windwow)
5.
Fluorination of single-walled carbon nanotube: The effects of fluorine on structural and electrical properties, Journal of Industrial and Engineering Chemistry, 2016, 37, 22  crossref(new windwow)
6.
Carbon nanotubes synthesis using diffusion and premixed flame methods: a review, Carbon letters, 2015, 16, 1, 1  crossref(new windwow)
7.
Dramatic enhancement of double-walled carbon nanotube quality through a one-pot tunable purification method, Carbon, 2016, 110, 292  crossref(new windwow)
8.
Specific features of low-frequency vibrational dynamics and low-temperature heat capacity of double-walled carbon nanotubes, Physics of the Solid State, 2016, 58, 5, 1011  crossref(new windwow)
9.
Double-Walled Carbon Nanotube Processing, Advanced Materials, 2015, 27, 20, 3105  crossref(new windwow)
10.
Large-Diameter Single-Wall Carbon Nanotubes Formed Alongside Small-Diameter Double-Walled Carbon Nanotubes, The Journal of Physical Chemistry C, 2015, 119, 3, 1524  crossref(new windwow)
11.
Elucidating the local interfacial structure of highly photoresponsive carbon nanotubes/PbS-QDs based nanohybrids grown by pulsed laser deposition, Carbon, 2016, 96, 145  crossref(new windwow)
 References
1.
Oberlin A, Endo M, Koyama T. Filamentous growth of carbon through benzene decomposition. J Cryst Growth, 32, 335 (1976). http://dx.doi.org/10.1016/0022-0248(76)90115-9. crossref(new window)

2.
Iijima S. Helical microtubules of graphitic carbon. Nature, 354, 56 (1991). http://dx.doi.org/10.1038/354056a0. crossref(new window)

3.
Dresselhaus MS, Dresselhaus G, Eklund PC. Science of Fullerenes and Carbon Nanotubes, Academic Press, San Diego, CA (1996).

4.
Endo M, Saito R, Dresselhaus MS, Dresselhaus G. From carbon fibers to nanotubes. In: Ebbesen TW, ed. Carbon Nanotubes: Preparation and Properties, CRC Press, Boca Raton, FL, 35 (1997).

5.
Saito R, Dresselhaus G, Dresselhaus MS. Physical Properties of Carbon Nanotubes, Imperial College Press, London, UK (1998).

6.
Harris PJF. Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century, Cambridge University Press, Cambridge, UK (1999).

7.
Jorio A, Dresselhaus G, Dresselhaus MS. Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties, and Applications, Springer, New York, NY (2008).

8.
De Volder MFL, Tawfick SH, Baughman RH, Hart AJ. Carbon nanotubes: present and future commercial applications. Science, 339, 535 (2013). http://dx.doi.org/10.1126/science.1222453. crossref(new window)

9.
Endo M, Muramatsu H, Hayashi T, Kim YA, Terrones M, Dresselhaus MS. Nanotechnology: 'Buckypaper' from coaxial nanotubes. Nature, 433, 476 (2005). http://dx.doi.org/10.1038/433476a. crossref(new window)

10.
Kim YA, Muramatsu H, Hayashi T, Endo M, Terrones M, Dresselhaus MS. Fabrication of high-purity, double-walled carbon nanotube buckypaper. Chem Vap Deposition, 12, 327 (2006). http://dx.doi.org/10.1002/cvde.200504217. crossref(new window)

11.
Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tomanek D, Fischer JE, Smalley RE. Crystalline ropes of metallic carbon nanotubes. Science, 273, 483 (1996). http://dx.doi.org/10.1126/science.273.5274.483. crossref(new window)

12.
Muramatsu H, Hayashi T, Kim YA, Shimamoto D, Kim YJ, Tantrakarn K, Endo M, Terrones M, Dresselhaus MS. Pore structure and oxidation stability of double-walled carbon nanotube-derived bucky paper. Chem Phys Lett, 414, 444 (2005). http://dx.doi.org/10.1016/j.cplett.2005.08.110. crossref(new window)

13.
Thomsen C, Reich S. Double resonant Raman scattering in graphite. Phys Rev Lett, 85, 5214 (2000). http://dx.doi.org/10.1103/PhysRevLett.85.5214. crossref(new window)

14.
Jorio A, Pimenta MA, Filho AGS, Saito R, Dresselhaus G, Dresselhaus MS. Characterizing carbon nanotube samples with resonance Raman scattering. New J Phys, 5, 139 (2003). http://dx.doi.org/10.1088/1367-2630/5/1/139. crossref(new window)

15.
Kim YA, Muramatsu H, Kojima M, Hayashi T, Endo M, Terrones M, Dresselhaus MS. The possible way to evaluate the purity of double-walled carbon nanotubes over single wall carbon nanotubes by chemical doping. Chem Phys Lett, 420, 377 (2006). http://dx.doi.org/10.1016/j.cplett.2005.12.068. crossref(new window)

16.
Yudasaka M, Ichihashi T, Kasuya D, Kataura H, Iijima S. Structure changes of single-wall carbon nanotubes and single-wall carbon nanohorns caused by heat treatment. Carbon, 41, 1273 (2003). http://dx.doi.org/10.1016/S0008-6223(03)00076-9. crossref(new window)

17.
Terrones M, Terrones H, Banhart F, Charlier JC, Ajayan PM. Coalescence of single-walled carbon nanotubes. Science, 288, 1226 (2000). http://dx.doi.org/10.1126/science.288.5469.1226. crossref(new window)

18.
O'Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH, Rialon KL, Boul PJ, Noon WH, Kittrell C, Ma J, Hauge RH, Weisman RB, Smalley RE. Band Gap fluorescence from individual single-walled carbon nanotubes. Science, 297, 593 (2002). http://dx.doi.org/10.1126/science.1072631. crossref(new window)

19.
Bachilo SM, Strano MS, Kittrell C, Hauge RH, Smalley RE, Weisman RB. Structure-assigned optical spectra of single-walled carbon nanotubes. Science, 298, 2361 (2002). http://dx.doi.org/10.1126/science.1078727. crossref(new window)

20.
Lebedkin S, Hennrich F, Skipa T, Kappes MM. Near-infrared photoluminescence of single-walled carbon nanotubes prepared by the laser vaporization method. J Phys Chem B, 107, 1949 (2003). http://dx.doi.org/10.1021/jp027096z. crossref(new window)

21.
Miyauchi Y, Chiashi S, Murakami Y, Hayashida Y, Maruyama S. Fluorescence spectroscopy of single-walled carbon nanotubes synthesized from alcohol. Chem Phys Lett, 387, 198 (2004). http://dx.doi.org/10.1016/j.cplett.2004.01.116. crossref(new window)

22.
Okazaki T, Saito T, Matsuura K, Ohshima S, Yumura M, Oyama Y, Saito R, Iijima S. Photoluminescence and population analysis of single-walled carbon nanotubes produced by CVD and pulsed-laser vaporization methods. Chem Phys Lett, 420, 286 (2006). http://dx.doi.org/10.1016/j.cplett.2005.11.128. crossref(new window)

23.
Heller DA, Jeng ES, Yeung TK, Martinez BM, Moll AE, Gastala JB, Strano MS. Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes. Science, 311, 508 (2006). http://dx.doi.org/10.1126/science.1120792. crossref(new window)

24.
Heller DA, Baik S, Eurell TE, Strano MS. Single-walled carbon nanotube spectroscopy in live cells: towards long-term labels and optical sensors. Adv Mater, 17, 2793 (2005). http://dx.doi.org/10.1002/adma.200500477. crossref(new window)

25.
Itkis ME, Borondics F, Yu A, Haddon RC. Bolometric infrared photoresponse of suspended single-walled carbon nanotube films. Science, 312, 413 (2006). http://dx.doi.org/10.1126/science.1125695. crossref(new window)

26.
Hertel T, Hagen A, Talalaev V, Arnold K, Hennrich F, Kappes M, Rosenthal S, McBride J, Ulbricht H, Flahaut E. Spectroscopy of single- and double-wall carbon nanotubes in different environments. Nano Lett, 5, 511 (2005). http://dx.doi.org/10.1021/nl050069a. crossref(new window)

27.
Shimamoto D, Muramatsu H, Hayashi T, Kim YA, Endo M, Park JS, Saito R, Terrones M, Dresselhaus MS. Strong and stable photoluminescence from the semiconducting inner tubes within double walled carbon nanotubes. Appl Phys Lett, 94, 083106 (2009). http://dx.doi.org/10.1063/1.3085966. crossref(new window)

28.
Muramatsu H, Hayashi T, Kim YA, Shimamoto D, Endo M, Meunier V, Sumpter BG, Terrones M, Dresselhaus MS. Bright photoluminescence from the inner tubes of "peapod"-derived double-walled carbon nanotubes. Small, 5, 2678 (2009). http://dx.doi.org/10.1002/smll.200901305. crossref(new window)

29.
Muramatsu H, Kim YA, Hayashi T, Endo M, Yonemoto A, Arikai H, Okino F, Touhara H. Fluorination of double-walled carbon nanotubes. Chem Commun, 2002 (2005). http://dx.doi.org/10.1039/B416393A. crossref(new window)

30.
Hayashi T, Shimamoto D, Kim YA, Muramatsu H, Okino F, Touhara H, Shimada T, Miyauchi Y, Maruyama S, Terrones M, Dresselhaus MS, Endo M. Selective optical property modification of double-walled carbon nanotubes by fluorination. ACS Nano, 2, 485 (2008). http://dx.doi.org/10.1021/nn700391w. crossref(new window)

31.
Kawasaki S, Aketa T, Touhara H, Okino F, Boltalina OV, Gol'd IV, Troyanov SI, Taylor R. Crystal structures of the fluorinated fullerenes $C_{60}F_{36}\;and\;C_{60}F_{48}$. J Phys Chem B, 103, 1223 (1999). http://dx.doi.org/10.1021/jp983394d. crossref(new window)

32.
Liu N, Touhara H, Okino F, Kawasaki S, Nakacho Y. Solid-state lithium cells based on fluorinated fullerene cathodes. J Electrochem Soc, 143, 2267 (1996). http://dx.doi.org/10.1149/1.1836992. crossref(new window)

33.
Mickelson ET, Huffman CB, Rinzler AG, Smalley RE, Hauge RH, Margrave JL. Fluorination of single-wall carbon nanotubes. Chem Phys Lett, 296, 188 (1998). http://dx.doi.org/10.1016/S0009-2614(98)01026-4. crossref(new window)

34.
An KH, Heo JG, Jeon KG, Bae DJ, Jo C, Yang CW, Park CY, Lee YH, Lee YS, Chung YS. X-ray photoemission spectroscopy study of fluorinated single-walled carbon nanotubes. Appl Phys Lett, 80, 4235 (2002). http://dx.doi.org/10.1063/1.1482801. crossref(new window)

35.
Kawasaki S, Komatsu K, Okino F, Touhara H, Kataura H. Fluorination of open- and closed-end single-walled carbon nanotubes. Phys Chem Chem Phys, 6, 1769 (2004). http://dx.doi.org/10.1039/B317011J. crossref(new window)

36.
Shi W, Wang Z, Zhang Q, Zheng Y, Ieong C, He M, Lortz R, Cai Y, Wang N, Zhang T, Zhang H, Tang Z, Sheng P, Muramatsu H, Kim YA, Endo M, Araujo PT, Dresselhaus MS. Superconductivity in bundles of double-wall carbon nanotubes. Sci Rep, 2, 625 (2012). http://dx.doi.org/10.1038/srep00625. crossref(new window)

37.
Baughman RH, Zakhidov AA, de Heer WA. Carbon nanotubes--the route toward applications. Science, 297, 787 (2002). http://dx.doi.org/10.1126/science.1060928. crossref(new window)

38.
Kim YA, Kojima M, Muramatsu H, Umemoto S, Watanabe T, Yoshida K, Sato K, Ikeda T, Hayashi T, Endo M, Terrones M, Dresselhaus MS. In situ Raman study on single- and double-walled carbon nanotubes as a function of lithium insertion. Small, 2, 667 (2006). http://dx.doi.org/10.1002/smll.200500496. crossref(new window)

39.
Miyamoto J, Hattori Y, Noguchi D, Tanaka H, Ohba T, Utsumi S, Kanoh H, Kim YA, Muramatsu H, Hayashi T, Endo M, Kaneko K. Efficient $H_2$ adsorption by nanopores of high-purity double-walled carbon nanotubes. J Am Chem Soc, 128, 12636 (2006). http://dx.doi.org/10.1021/ja064744+. crossref(new window)

40.
Radovic LR, Rodriguez-Reinoso F. Carbon materials in catalysis. In: Thrower PA, ed. Chemistry and Physics of Carbon, Marcel Dekker, New York, NY, 1 (1997).

41.
Roman-Martinez MC, Cazorla-Amoros D, Linares-Solano A, De Lecea CS-Mn, Yamashita H, Anpo M. Metal-support interaction in Pt/C catalysts. Influence of the support surface chemistry and the metal precursor. Carbon, 33, 3 (1995). http://dx.doi.org/10.1016/0008-6223(94)00096-I. crossref(new window)

42.
Li W, Wang X, Chen Z, Waje M, Yan Y. Pt-Ru supported on double-walled carbon nanotubes as high-performance anode catalysts for direct methanol fuel cells. J Phys Chem B, 110, 15353 (2006). http://dx.doi.org/10.1021/jp0623443. crossref(new window)

43.
Dai H, Hafner JH, Rinzler AG, Colbert DT, Smalley RE. Nanotubes as nanoprobes in scanning probe microscopy. Nature, 384, 147 (1996). http://dx.doi.org/10.1038/384147a0. crossref(new window)

44.
Hudspeth QM, Nagle KP, Zhao YP, Karabacak T, Nguyen CV, Meyyappan M, Wang GC, Lu TM. How does a multiwalled carbon nanotube atomic force microscopy probe affect the determination of surface roughness statistics? Surf Sci, 515, 453 (2002). http://dx.doi.org/10.1016/S0039-6028(02)01955-6. crossref(new window)

45.
Nishijima H, Kamo S, Akita S, Nakayama Y, Hohmura KI, Yoshimura SH, Takeyasu K. Carbon-nanotube tips for scanning probe microscopy: preparation by a controlled process and observation of deoxyribonucleic acid. Appl Phys Lett, 74, 4061 (1999). http://dx.doi.org/10.1063/1.123261. crossref(new window)

46.
Ye Q, Cassell AM, Liu H, Chao KJ, Han J, Meyyappan M. Largescale fabrication of carbon nanotube probe tips for atomic force microscopy critical dimension imaging applications. Nano Lett, 4, 1301 (2004). http://dx.doi.org/10.1021/nl049341r. crossref(new window)

47.
Kuwahara S, Akita S, Shirakihara M, Sugai T, Nakayama Y, Shinohara H. Fabrication and characterization of high-resolution AFM tips with high-quality double-wall carbon nanotubes. Chem Phys Lett, 429, 581 (2006). http://dx.doi.org/10.1016/j.cplett.2006.08.045. crossref(new window)

48.
de Heer WA, Chatelain A, Ugarte D. A carbon nanotube field-emission electron source. Science, 270, 1179 (1995). http://dx.doi.org/10.1126/science.270.5239.1179. crossref(new window)

49.
Bonard JM, Croci M, Klinke C, Kurt R, Noury O, Weiss N. Carbon nanotube films as electron field emitters. Carbon, 40, 1715 (2002). http://dx.doi.org/10.1016/S0008-6223(02)00011-8. crossref(new window)

50.
Bonard JM, Salvetat JP, Stockli T, de Heer WA, Forro L, Chatelain A. Field emission from single-wall carbon nanotube films. Appl Phys Lett, 73, 918 (1998). http://dx.doi.org/10.1063/1.122037. crossref(new window)

51.
Seco K, Kinoshita J, Saito Y. In situ transmission electron microscopy of field-emitting bundles of double-wall carbon nanotubes. Jpn J Appl Phys, 44, L743 (2005). http://dx.doi.org/10.1143/JJAP.44.L743. crossref(new window)

52.
Son YW, Oh S, Ihm J, Han S. Field emission properties of double-wall carbon nanotubes. Nanotechnology, 16, 125 (2005). http://dx.doi.org/10.1088/0957-4484/16/1/025. crossref(new window)

53.
Hiraoka T, Yamada T, Hata K, Futaba DN, Kurachi H, Uemura S, Yumura M, Iijima S. Synthesis of single- and double-walled carbon nanotube forests on conducting metal foils. J Am Chem Soc, 128, 13338 (2006). http://dx.doi.org/10.1021/ja0643772. crossref(new window)

54.
Knupfer M. Electronic properties of carbon nanostructures. Surf Sci Rep, 42, 1 (2001). http://dx.doi.org/10.1016/S0167-5729(00)00012-1. crossref(new window)

55.
Zhang G, Qi P, Wang X, Lu Y, Li X, Tu R, Bangsaruntip S, Mann D, Zhang L, Dai H. Selective etching of metallic carbon nanotubes by gas-phase reaction. Science, 314, 974 (2006). http://dx.doi.org/10.1126/science.1133781. crossref(new window)

56.
Shimada T, Sugai T, Ohno Y, Kishimoto S, Mizutani T, Yoshida H, Okazaki T, Shinohara H. Double-wall carbon nanotube field-effect transistors: ambipolar transport characteristics. Appl Phys Lett, 84, 2412 (2004). http://dx.doi.org/10.1063/1.1689404. crossref(new window)

57.
Wang S, Liang XL, Chen Q, Zhang ZY, Peng LM. Field-effect characteristics and screening in double-walled carbon nanotube field-effect transistors. J Phys Chem B, 109, 17361 (2005). http://dx.doi.org/10.1021/jp053739+. crossref(new window)

58.
Jung YC, Shimamoto D, Muramatsu H, Kim YA, Hayashi T, Terrones M, Endo M. Robust, Conducting, and transparent polymer composites using surface-modified and individualized doublewalled carbon nanotubes. Adv Mater, 20, 4509 (2008). http://dx.doi.org/10.1002/adma.200801659. crossref(new window)