Advanced SearchSearch Tips
Overlook of current chemical vapor deposition-grown large single-crystal graphene domains
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 15, Issue 3,  2014, pp.151-161
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2014.15.3.151
 Title & Authors
Overlook of current chemical vapor deposition-grown large single-crystal graphene domains
Park, Kyung Tae; Kim, Taehoon; Park, Chong Rae;
  PDF(new window)
Exceptional progress has been made with chemical vapor deposition (CVD) of graphene in the past few years. Not only has good monolayer growth of graphene been achieved, but large-area synthesis of graphene sheets has been successful too. However, the polycrystalline nature of CVD graphene is hampering further progress as graphene property degrades due to presence of grain boundaries. This review will cover factors that affect nucleation of graphene and how other scientists sought to obtain large graphene domains. In addition, the limitation of the current research trend will be touched upon as well.
chemical vapor deposition;graphene;single-crystal;seeded growth;
 Cited by
Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science, 306, 666 (2004). crossref(new window)

Choi YY, Kang SJ, Kim HK, Choi WM, Na SI. Multilayer graphene films as transparent electrodes for organic photovoltaic devices. Sol Energy Mater Sol Cells, 96, 281 (2012). crossref(new window)

Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457, 706 (2009). crossref(new window)

Wang X, Zhi L, Mullen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett, 8, 323 (2007). crossref(new window)

Matyba P, Yamaguchi H, Eda G, Chhowalla M, Edman L, Robinson ND. Graphene and mobile ions: the key to all-plastic, solutionprocessed light-emitting devices. ACS Nano, 4, 637 (2010). crossref(new window)

Lemme MC, Echtermeyer TJ, Baus M, Kurz H. A graphene fieldeffect device. IEEE Electron Device Lett, 28, 282 (2007). crossref(new window)

Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y. Graphene based electrochemical sensors and biosensors: a review. Electroanalysis, 22, 1027 (2010). crossref(new window)

Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS. Detection of individual gas molecules adsorbed on graphene. Nat Mater, 6, 652 (2007). crossref(new window)

Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS. Graphenebased composite materials. Nature, 442, 282 (2006). crossref(new window)

Berger C, Song Z, Li T, Li X, Ogbazghi AY, Feng R, Dai Z, March-enkov AN, Conrad EH, First PN, de Heer WA. Ultrathin epitaxial graphite: 2d electron gas properties and a route toward graphenebased nanoelectronics. J Phys Chem B, 108, 19912 (2004). crossref(new window)

Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett, 9, 30 (2008). crossref(new window)

Yu Q, Lian J, Siriponglert S, Li H, Chen YP, Pei SS. Graphene segregated on Ni surfaces and transferred to insulators. Appl Phys Lett, 93, 113103 (2008). crossref(new window)

Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Balakrishnan J, Lei T, Ri Kim H, Song YI, Kim YJ, Kim KS, Ozyilmaz B, Ahn JH, Hong BH, Iijima S. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nano, 5, 574 (2010). crossref(new window)

Choi WJ, Chung YJ, Park S, Yang CS, Lee YK, An KS, Lee YS, Lee JO. A simple method for cleaning graphene surfaces with an electrostatic force. Adv Mater, 26, 637 (2014). crossref(new window)

Yu Q, Jauregui LA, Wu W, Colby R, Tian J, Su Z, Cao H, Liu Z, Pandey D, Wei D, Chung TF, Peng P, Guisinger NP, Stach EA, Bao J, Pei SS, Chen YP. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat Mater, 10, 443 (2011). crossref(new window)

Kobayashi T, Bando M, Kimura N, Shimizu K, Kadono K, Umezu N, Miyahara K, Hayazaki S, Nagai S, Mizuguchi Y, Murakami Y, Hobara D. Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Appl Phys Lett, 102, 023112 (2013). crossref(new window)

Ryu J, Kim Y, Won D, Kim N, Park JS, Lee EK, Cho D, Cho SP, Kim SJ, Ryu GH, Shin HAS, Lee Z, Hong BH, Cho S. Fast synthesis of high-performance graphene films by hydrogen-free rapid thermal chemical vapor deposition. ACS Nano, 8, 950 (2013). crossref(new window)

Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 146, 351 (2008). crossref(new window)

Chen JH, Jang C, Xiao S, Ishigami M, Fuhrer MS. Intrinsic and extrinsic performance limits of graphene devices on $SiO_2$. Nat Nano, 3, 206 (2008). crossref(new window)

Zhou H, Yu WJ, Liu L, Cheng R, Chen Y, Huang X, Liu Y, Wang Y, Huang Y, Duan X. Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene. Nat Commun, 4, 2096 (2013). crossref(new window)

Sutter P, Sadowski JT, Sutter E. Graphene on Pt(111): growth and substrate interaction. Phys Rev B, 80, 245411 (2009). crossref(new window)

Coraux J, N'Diaye AT, Busse C, Michely T. Structural coherency of graphene on Ir(111). Nano Lett, 8, 565 (2008). crossref(new window)

Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 324, 1312 (2009). crossref(new window)

Li X, Cai W, Colombo L, Ruoff RS. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett, 9, 4268 (2009). crossref(new window)

Zhang Y, Gomez L, Ishikawa FN, Madaria A, Ryu K, Wang C, Badmaev A, Zhou C. Comparison of graphene growth on singlecrystalline and polycrystalline ni by chemical vapor deposition. J Phys Chem Lett, 1, 3101 (2010). crossref(new window)

Iwasaki T, Park HJ, Konuma M, Lee DS, Smet JH, Starke U. Longrange ordered single-crystal graphene on high-quality heteroepitaxial Ni thin films grown on MgO(111). Nano Lett, 11, 79 (2010). crossref(new window)

Pan Y, Zhang H, Shi D, Sun J, Du S, Liu F, Gao HJ. Highly ordered, millimeter-scale, continuous, single-crystalline graphene monolayer formed on Ru (0001). Adv Mater, 21, 2777 (2009). crossref(new window)

Kim H, Mattevi C, Calvo MR, Oberg JC, Artiglia L, Agnoli S, Hirjibehedin CF, Chhowalla M, Saiz E. Activation energy paths for graphene nucleation and growth on Cu. ACS Nano, 6, 3614 (2012). crossref(new window)

Robertson AW, Warner JH. Hexagonal single crystal domains of few-layer graphene on copper foils. Nano Lett, 11, 1182 (2011). crossref(new window)

Ambrosi A, Bonanni A, Sofer Z, Pumera M. Large-scale quantification of CVD graphene surface coverage. Nanoscale, 5, 2379 (2013). crossref(new window)

Bhaviripudi S, Jia X, Dresselhaus MS, Kong J. Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Lett, 10, 4128 (2010). crossref(new window)

Yan Z, Lin J, Peng Z, Sun Z, Zhu Y, Li L, Xiang C, Samuel EL, Kittrell C, Tour JM. Toward the synthesis of wafer-scale single-crystal graphene on copper foils. ACS Nano, 6, 9110 (2012). crossref(new window)

Wu Y, Hao Y, Jeong HY, Lee Z, Chen S, Jiang W, Wu Q, Piner RD, Kang J, Ruoff RS. Crystal structure evolution of individual graphene islands during CVD growth on copper foil. Adv Mater, 25, 6744 (2013). crossref(new window)

Bartelt NC, McCarty KF. Graphene growth on metal surfaces. MRS Bull, 37, 1158 (2012). crossref(new window)

Venables JA, Spiller GDT, Hanbucken M. Nucleation and growth of thin films. Rep Prog Phys, 47, 399 (1984). crossref(new window)

Trinsoutrot P, Rabot C, Vergnes H, Delamoreanu A, Zenasni A, Caussat B. High quality graphene synthesized by atmospheric pressure CVD on copper foil. Surf Coat Technol, 230, 87 (2013). crossref(new window)

Kalbac M, Frank O, Kavan L. The control of graphene double-layer formation in copper-catalyzed chemical vapor deposition. Carbon, 50, 3682 (2012). crossref(new window)

Vlassiouk I, Regmi M, Fulvio P, Dai S, Datskos P, Eres G, Smirnov S. Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS Nano, 5, 6069 (2011). crossref(new window)

Losurdo M, Giangregorio MM, Capezzuto P, Bruno G. Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure. Phys Chem Chem Phys, 13, 20836 (2011). crossref(new window)

Geng D, Wu B, Guo Y, Luo B, Xue Y, Chen J, Yu G, Liu Y. Fractal etching of graphene. J Am Chem Soc, 135, 6431 (2013). crossref(new window)

Zhang Y, Li Z, Kim P, Zhang L, Zhou C. Anisotropic hydrogen etching of chemical vapor deposited graphene. ACS Nano, 6, 126 (2011).

Liu W, Li H, Xu C, Khatami Y, Banerjee K. Synthesis of highquality monolayer and bilayer graphene on copper using chemical vapor deposition. Carbon, 49, 4122 (2011). crossref(new window)

Han GH, Gunes F, Bae JJ, Kim ES, Chae SJ, Shin H-J, Choi JY, Pribat D, Lee YH. Influence of copper morphology in forming nucleation seeds for graphene growth. Nano Lett, 11, 4144 (2011). crossref(new window)

Zhang B, Lee WH, Piner R, Kholmanov I, Wu Y, Li H, Ji H, Ruoff RS. Low-temperature chemical vapor deposition growth of graphene from toluene on electropolished copper foils. ACS Nano, 6, 2471 (2012). crossref(new window)

Luo Z, Lu Y, Singer DW, Berck ME, Somers LA, Goldsmith BR, Johnson ATC. Effect of substrate roughness and feedstock concentration on growth of wafer-scale graphene at atmospheric pressure. Chem Mater, 23, 1441 (2011). crossref(new window)

Wang H, Wang G, Bao P, Yang S, Zhu W, Xie X, Zhang WJ. Controllable synthesis of submillimeter single-crystal monolayer graphene domains on copper foils by suppressing nucleation. J Am Chem Soc, 134, 3627 (2012). crossref(new window)

Rasool HI, Song EB, Allen MJ, Wassei JK, Kaner RB, Wang KL, Weiller BH, Gimzewski JK. Continuity of graphene on polycrystalline copper. Nano Lett, 11, 251 (2010). crossref(new window)

Edwards RS, Coleman KS. Graphene film growth on polycrystalline metals. Acc Chem Res, 46, 23 (2012). crossref(new window)

Murdock AT, Koos A, Britton TB, Houben L, Batten T, Zhang T, Wilkinson AJ, Dunin-Borkowski RE, Lekka CE, Grobert N. Controlling the orientation, edge geometry, and thickness of chemical vapor deposition graphene. ACS Nano, 7, 1351 (2013). crossref(new window)

Chatain D, Wynblatt P, Rohrer GS. Anisotropic phenomena at interfaces in bismuth-saturated copper. Scripta Mater, 50, 565 (2004). crossref(new window)

Wofford JM, Nie S, McCarty KF, Bartelt NC, Dubon OD. Graphene islands on Cu foils: the interplay between shape, orientation, and defects. Nano Lett, 10, 4890 (2010). crossref(new window)

Wood JD, Schmucker SW, Lyons AS, Pop E, Lyding JW. Effects of polycrystalline Cu substrate on graphene growth by chemical vapor deposition. Nano Lett, 11, 4547 (2011). crossref(new window)

Zhang W, Wu P, Li Z, Yang J. First-principles thermodynamics of graphene growth on Cu surfaces. J Phys Chem C, 115, 17782 (2011). crossref(new window)

Hansen L, Stoltze P, Jacobsen KW, Nørskov JK. Self-diffusion on copper surfaces. Phys Rev B, 44, 6523 (1991). crossref(new window)

Kim DW, Lee J, Kim SJ, Jeon S, Jung HT. The effects of the crystalline orientation of Cu domains on the formation of nanoripple arrays in CVD-grown graphene on Cu. J Mater Chem C, 1, 7819 (2013). crossref(new window)

Wu YA, Fan Y, Speller S, Creeth GL, Sadowski JT, He K, Robertson AW, Allen CS, Warner JH. Large single crystals of graphene on melted copper using chemical vapor deposition. ACS Nano, 6, 5010 (2012). crossref(new window)

Mohsin A, Liu L, Liu P, Deng W, Ivanov IN, Li G, Dyck OE, Duscher G, Dunlap JR, Xiao K, Gu G. Synthesis of millimeter-size hexagon-shaped graphene single crystals on resolidified copper. ACS Nano, 7, 8924 (2013). crossref(new window)

Gan L, Luo Z. Turning off hydrogen to realize seeded growth of subcentimeter single-crystal graphene grains on copper. ACS Nano, 7, 9480 (2013). crossref(new window)

Yamukyan MH, Manukyan KV, Kharatyan SL. Copper oxide reduction by hydrogen under the self-propagation reaction mode. J Alloys Compd, 473, 546 (2009). crossref(new window)

Hao Y, Bharathi MS, Wang L, Liu Y, Chen H, Nie S, Wang X, Chou H, Tan C, Fallahazad B, Ramanarayan H, Magnuson CW, Tutuc E, Yakobson BI, McCarty KF, Zhang YW, Kim P, Hone J, Colombo L, Ruoff RS. The role of surface oxygen in the growth of large single-crystal graphene on copper. Science, 342, 720 (2013). crossref(new window)

Vlassiouk I, Smirnov S, Regmi M, Surwade SP, Srivastava N, Feenstra R, Eres G, Parish C, Lavrik N, Datskos P, Dai S, Fulvio P. Graphene nucleation density on copper: fundamental role of background pressure. J Phys Chem C, 117, 18919 (2013). crossref(new window)

Karabacak T, DeLuca JS, Wang PI, Eyck GAT, Ye D, Wang GC, Lu TM. Low temperature melting of copper nanorod arrays. J Appl Phys, 99, 064304 (2006). crossref(new window)

Kidambi PR, Ducati C, Dlubak B, Gardiner D, Weatherup RS, Martin MB, Seneor P, Coles H, Hofmann S. The parameter space of graphene chemical vapor deposition on polycrystalline Cu. J Phys Chem C, 116, 22492 (2012). crossref(new window)

Wu T, Ding G, Shen H, Wang H, Sun L, Jiang D, Xie X, Jiang M. Triggering the continuous growth of graphene toward millimeter-sized grains. Adv Funct Mater, 23, 198 (2013). crossref(new window)

Wu W, Jauregui LA, Su Z, Liu Z, Bao J, Chen YP, Yu Q. Growth of single crystal graphene arrays by locally controlling nucleation on polycrystalline Cu using chemical vapor deposition. Adv Mater, 23, 4898 (2011). crossref(new window)