Advanced SearchSearch Tips
Influence of ionic liquid additives on the conducting and interfacial properties of organic solvent-based electrolytes against an activated carbon electrode
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 15, Issue 3,  2014, pp.187-191
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2014.15.3.187
 Title & Authors
Influence of ionic liquid additives on the conducting and interfacial properties of organic solvent-based electrolytes against an activated carbon electrode
Kim, Kyungmin; Jung, Yongju; Kim, Seok;
  PDF(new window)
This study reports on the influence of N-butyl-N-methylpyrrolidinium tetrafluoroborate () ionic liquid additive on the conducting and interfacial properties of organic solvent based electrolytes against a carbon electrode. We used the mixture of ethylene carbonate/dimethoxyethane (1:1) as an organic solvent electrolyte and tetraethylammonium tetrafluoroborate () as a common salt. Using the ionic liquid as additive produced higher ionic conductivity in the electrolyte and lower interface resistance between carbon and electrolyte, resulting in improved capacitance. The chemical and electrochemical stability of the electrolyte was measured by ionic conductivity meter and linear sweep voltammetry. The electrochemical analysis between electrolyte and carbon electrode was examined by cyclic voltammetry and electrochemical impedance spectroscopy.
organic solvent-based electrolytes;activated carbon;ionic liquid additives;
 Cited by
Ion conducting properties of imidazolium salts with tri-alkyl chains in organic electrolytes against activated carbon electrodes, Carbon letters, 2016, 17, 1, 70  crossref(new windwow)
Oh MS, Park SJ, Jung Y, Kim S. Electrochemical properties of polyaniline composite electrodes prepared by in-situ polymerization in titanium dioxide dispersed aqueous solution. Synth Met, 162, 695 (2012). crossref(new window)

Park SK, Kim S. Effect of carbon blacks filler addition on electrochemical behaviors of $Co_3O_4/graphene$ nanosheets as a supercapacitor electrodes. Electrochim Acta, 89, 516 (2013). crossref(new window)

Kim KS, Park SJ. Electrochemical performance of graphene/carbon electrode contained well-balanced micro- and mesopores by activation-free method. Electrochim Acta, 65, 50 (2012). crossref(new window)

Gao ZH, Zhang H, Cao GP, Han MF, Yang YS. Spherical porous VN and $NiO_x$ as electrode materials for asymmetric supercapacitor. Electrochim Acta, 87, 375 (2013). crossref(new window)

Park SK, Park SJ, Kim S. Preparation and capacitance behaviors of cobalt oxide/graphene composites. Carbon Lett, 13, 130 (2012). crossref(new window)

Kim JE, Park SJ, Kim S. Capacitance behaviors of polyaniline/graphene nanosheet composites prepared by aniline chemical polymerization. Carbon Lett, 14, 51 (2013). crossref(new window)

Ruch PW, Hahn M, Rosciano F, Holzapfel M, Kaiser H, Scheifele W, Schmitt B, Novak P, Kotz R, Wokaun A. In situ X-ray diffraction of the intercalation of $(C_2H_5)_4N^+$ and $BF_4\;^{-}$ into graphite from acetonitrile and propylene carbonate based supercapacitor electrolytes. Electrochim Acta, 53, 1074 (2007). crossref(new window)

Burke A. R&D considerations for the performance and application of electrochemical capacitors. Electrochim Acta, 53, 1083 (2007). crossref(new window)

Anouti M, Couadou E, Timperman L, Galiano H. Protic ionic liquid as electrolyte for high-densities electrochemical double layer capacitors with activated carbon electrode material. Electrochim Acta, 64, 110 (2012). crossref(new window)

Kim JH, Nam KW, Ma SB, Kim KB. Fabrication and electrochemical properties of carbon nanotube film electrodes. Carbon, 44, 1963 (2006). crossref(new window)

Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA. Electronic confinement and coherence in patterned epitaxial graphene. Science, 312, 1191 (2006). crossref(new window)

Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS. Synthesis of graphenebased nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45, 1558 (2007). crossref(new window)

Palm R, Kurig H, Tonurist K, Janes A, Lust E. Is the mixture of 1-ethyl-3-methylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium tetrafluoroborate applicable as electrolyte in electrical double layer capacitors? Electrochem Commun, 22, 203 (2012). crossref(new window)

Francke R, Cericola D, Kotz R, Weingarth D, Waldvogel SR. Novel electrolytes for electrochemical double layer capacitors based on 1,1,1,3,3,3-hexafluoropropan-2-ol. Electrochim Acta, 62, 372 (2012). crossref(new window)

Brandt A, Isken P, Lex-Balducci A, Balducci A. Adiponitrile-based electrochemical double layer capacitor. J Power Sources, 204, 213 (2012). crossref(new window)

Isken P, Dippel C, Schmitz R, Schmitz RW, Kunze M, Passerini S, Winter M, Lex-Balducci A. High flash point electrolyte for use in lithium-ion batteries. Electrochim Acta, 56, 7530 (2011). crossref(new window)

Perricone E, Chamas M, Cointeaux L, Lepretre JC, Judeinstein P, Azais P, Beguin F, Alloin F. Investigation of methoxypropionitrile as co-solvent for ethylene carbonate based electrolyte in supercapacitors. A safe and wide temperature range electrolyte. Electrochim Acta, 93, 1 (2013). crossref(new window)

Abu-Lebdeh Y, Davidson I. High-voltage electrolytes based on adiponitrile for Li-ion batteries. J Electrochem Soc, 156, A60 (2009). crossref(new window)

Oh MS, Kim S. Effect of dodecyl benzene sulfonic acid on the preparation of polyaniline/activated carbon composites by in situ emulsion polymerization. Electrochim Acta, 59, 196 (2012). crossref(new window)

Brandt A, Balducci A. The influence of pore structure and surface groups on the performance of high voltage electrochemical double layer capacitors containing adiponitrile-based electrolyte. J Electrochem Soc, 159, A2053 (2012). crossref(new window)

Kang J, Wen J, Jayaram SH, Yu A, Wang X. Development of an equivalent circuit model for electrochemical double layer capacitors (EDLCs) with distinct electrolytes. Electrochim Acta, 115, 587 (2014). crossref(new window)

Oh MS, Kim S. Synthesis and analysis of polyaniline/$TiO_2$ composites prepared with various molar ratios between aniline monomer and para-toluenesulfonic acid, Electrochimica Acta, 78, 279 (2012). crossref(new window)